RESUMEN
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a devastating malignancy with a 5-year survival rate of 6% following a diagnosis, and novel therapeutic modalities are needed. Protease-activated receptor 1 (PAR1) is abundantly overexpressed by both tumor cells and multiple stroma cell subsets in the tumor microenvironment (TME), thereby offering a suitable immunotherapy target. METHODS: A chimeric antigen receptor (CAR) strategy was applied to target PAR1 using a human anti-PAR1 scFv antibody fused to the transmembrane region with two co-stimulatory intracellular signaling domains of cluster of differentiation 28 (CD28) and CD137 (4-1BB), added to CD3ζ in tandem. RESULTS: The engineered PAR1CAR-T cells eliminated PAR1 overexpression and transforming growth factor (TGF)-ß-mediated PAR1-upregulated cancer cells by approximately 80% in vitro. The adoptive transfer of PAR1CAR-T cells was persistently enhanced and induced the specific regression of established MIA PaCa-2 cancer cells by > 80% in xenograft models. Accordingly, proinflammatory cytokines/chemokines increased in CAR-T-cell-treated mouse sera, whereas Ki67 expression in tumors decreased. Furthermore, the targeted elimination of PAR1-expressing tumors reduced matrix metalloproteinase 1 (MMP1) levels, suggesting that the blocking of the PAR1/MMP1 pathway constitutes a new therapeutic option for PDAC treatment. CONCLUSIONS: Third-generation PAR1CAR-T cells have antitumor activity in the TME, providing innovative CAR-T-cell immunotherapy against PDAC.
Asunto(s)
Neoplasias Pancreáticas , Receptores Quiméricos de Antígenos , Humanos , Animales , Ratones , Receptor PAR-1/genética , Metaloproteinasa 1 de la Matriz , Neoplasias Pancreáticas/terapia , Microambiente Tumoral , Neoplasias PancreáticasRESUMEN
X-linked retinoschisis (XLRS) is an inherited retinal disorder with severe retinoschisis and visual impairments. Multiomics approaches integrate single-cell RNA-sequencing (scRNA-seq) and spatiotemporal transcriptomics (ST) offering potential for dissecting transcriptional networks and revealing cell-cell interactions involved in biomolecular pathomechanisms. Herein, a multimodal approach is demonstrated combining high-throughput scRNA-seq and ST to elucidate XLRS-specific transcriptomic signatures in two XLRS-like models with retinal splitting phenotypes, including genetically engineered (Rs1emR209C) mice and patient-derived retinal organoids harboring the same patient-specific p.R209C mutation. Through multiomics transcriptomic analysis, the endoplasmic reticulum (ER) stress/eukryotic initiation factor 2 (eIF2) signaling, mTOR pathway, and the regulation of eIF4 and p70S6K pathways are identified as chronically enriched and highly conserved disease pathways between two XLRS-like models. Western blots and proteomics analysis validate the occurrence of unfolded protein responses, chronic eIF2α signaling activation, and chronic ER stress-induced apoptosis. Furthermore, therapeutic targeting of the chronic ER stress/eIF2α pathway activation synergistically enhances the efficacy of AAV-mediated RS1 gene delivery, ultimately improving bipolar cell integrity, postsynaptic transmission, disorganized retinal architecture, and electrophysiological responses. Collectively, the complex transcriptomic signatures obtained from Rs1emR209C mice and patient-derived retinal organoids using the multiomics approach provide opportunities to unravel potential therapeutic targets for incurable retinal diseases, such as XLRS.