Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 163(6): 1360-74, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26638070

RESUMEN

Microbial functions in the host physiology are a result of the microbiota-host co-evolution. We show that cold exposure leads to marked shift of the microbiota composition, referred to as cold microbiota. Transplantation of the cold microbiota to germ-free mice is sufficient to increase insulin sensitivity of the host and enable tolerance to cold partly by promoting the white fat browning, leading to increased energy expenditure and fat loss. During prolonged cold, however, the body weight loss is attenuated, caused by adaptive mechanisms maximizing caloric uptake and increasing intestinal, villi, and microvilli lengths. This increased absorptive surface is transferable with the cold microbiota, leading to altered intestinal gene expression promoting tissue remodeling and suppression of apoptosis-the effect diminished by co-transplanting the most cold-downregulated strain Akkermansia muciniphila during the cold microbiota transfer. Our results demonstrate the microbiota as a key factor orchestrating the overall energy homeostasis during increased demand.


Asunto(s)
Metabolismo Energético , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/fisiología , Homeostasis , Tejido Adiposo Blanco/metabolismo , Animales , Apoptosis , Frío , Enterocitos/citología , Enterocitos/metabolismo , Vida Libre de Gérmenes , Resistencia a la Insulina , Absorción Intestinal , Ratones , Verrucomicrobia/metabolismo
2.
Genomics ; 110(2): 98-111, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28911974

RESUMEN

The GLIS family zinc finger 3 isoform (GLIS3) is a risk gene for Type 1 and Type 2 diabetes, glaucoma and Alzheimer's disease endophenotype. We identified GLIS3 binding sites in insulin secreting cells (INS1) (FDR q<0.05; enrichment range 1.40-9.11 fold) sharing the motif wrGTTCCCArTAGs, which were enriched in genes involved in neuronal function and autophagy and in risk genes for metabolic and neuro-behavioural diseases. We confirmed experimentally Glis3-mediated regulation of the expression of genes involved in autophagy and neuron function in INS1 and neuronal PC12 cells. Naturally-occurring coding polymorphisms in Glis3 in the Goto-Kakizaki rat model of type 2 diabetes were associated with increased insulin production in vitro and in vivo, suggestive alteration of autophagy in PC12 and INS1 and abnormal neurogenesis in hippocampus neurons. Our results support biological pleiotropy of GLIS3 in pathologies affecting ß-cells and neurons and underline the existence of trans­nosology pathways in diabetes and its co-morbidities.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Animales , Autofagia , Sitios de Unión , Línea Celular Tumoral , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Hipocampo/citología , Masculino , Neurogénesis , Neuronas/citología , Células PC12 , Polimorfismo Genético , Unión Proteica , Ratas , Ratas Sprague-Dawley , Factores de Transcripción/química , Factores de Transcripción/genética
3.
Cell Metab ; 33(11): 2231-2246.e8, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34687652

RESUMEN

Autoimmunity is energetically costly, but the impact of a metabolically active state on immunity and immune-mediated diseases is unclear. Ly6Chi monocytes are key effectors in CNS autoimmunity with an elusive role in priming naive autoreactive T cells. Here, we provide unbiased analysis of the immune changes in various compartments during cold exposure and show that this energetically costly stimulus markedly ameliorates active experimental autoimmune encephalomyelitis (EAE). Cold exposure decreases MHCII on monocytes at steady state and in various inflammatory mouse models and suppresses T cell priming and pathogenicity through the modulation of monocytes. Genetic or antibody-mediated monocyte depletion or adoptive transfer of Th1- or Th17-polarized cells for EAE abolishes the cold-induced effects on T cells or EAE, respectively. These findings provide a mechanistic link between environmental temperature and neuroinflammation and suggest competition between cold-induced metabolic adaptations and autoimmunity as energetic trade-off beneficial for the immune-mediated diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Enfermedades Neuroinflamatorias , Traslado Adoptivo , Animales , Autoinmunidad , Ratones , Ratones Endogámicos C57BL , Células Th17
4.
Cell Metab ; 32(4): 575-590.e7, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32916104

RESUMEN

Osteoporosis is the most prevalent metabolic bone disease, characterized by low bone mass and microarchitectural deterioration. Here, we show that warmth exposure (34°C) protects against ovariectomy-induced bone loss by increasing trabecular bone volume, connectivity density, and thickness, leading to improved biomechanical bone strength in adult female, as well as in young male mice. Transplantation of the warm-adapted microbiota phenocopies the warmth-induced bone effects. Both warmth and warm microbiota transplantation revert the ovariectomy-induced transcriptomics changes of the tibia and increase periosteal bone formation. Combinatorial metagenomics/metabolomics analysis shows that warmth enhances bacterial polyamine biosynthesis, resulting in higher total polyamine levels in vivo. Spermine and spermidine supplementation increases bone strength, while inhibiting polyamine biosynthesis in vivo limits the beneficial warmth effects on the bone. Our data suggest warmth exposure as a potential treatment option for osteoporosis while providing a mechanistic framework for its benefits in bone disease.


Asunto(s)
Microbioma Gastrointestinal , Osteoporosis/prevención & control , Animales , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoporosis/metabolismo , Ovariectomía
5.
Cell Metab ; 28(6): 907-921.e7, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30174308

RESUMEN

Caloric restriction (CR) stimulates development of functional beige fat and extends healthy lifespan. Here we show that compositional and functional changes in the gut microbiota contribute to a number of CR-induced metabolic improvements and promote fat browning. Mechanistically, these effects are linked to a lower expression of the key bacterial enzymes necessary for the lipid A biosynthesis, a critical lipopolysaccharide (LPS) building component. The decreased LPS dictates the tone of the innate immune response during CR, leading to increased eosinophil infiltration and anti-inflammatory macrophage polarization in fat of the CR animals. Genetic and pharmacological suppression of the LPS-TLR4 pathway or transplantation with Tlr4-/- bone-marrow-derived hematopoietic cells increases beige fat development and ameliorates diet-induced fatty liver, while Tlr4-/- or microbiota-depleted mice are resistant to further CR-stimulated metabolic alterations. These data reveal signals critical for our understanding of the microbiota-fat signaling axis during CR and provide potential new anti-obesity therapeutics.


Asunto(s)
Tejido Adiposo Beige/metabolismo , Proteínas Bacterianas/metabolismo , Restricción Calórica , Hígado Graso/metabolismo , Microbioma Gastrointestinal , Tracto Gastrointestinal , Lípido A/metabolismo , Tejido Adiposo Beige/citología , Animales , Eosinófilos/inmunología , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor Toll-Like 4/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-29056925

RESUMEN

The intestinal microbiota is a plastic ecosystem that is shaped by environmental and genetic factors, interacting with virtually all tissues of the host. Many signals result from the interplay between the microbiota with its mammalian symbiont that can lead to altered metabolism. Disruptions in the microbial composition are associated with a number of comorbidities linked to the metabolic syndrome. Promoting the niche expansion of beneficial bacteria through diet and supplements can improve metabolic disorders. Reintroducing bacteria through probiotic treatment or fecal transplant is a strategy under active investigation for multiple pathological conditions. Here, we review the recent knowledge of microbiota's contribution to host pathology, the modulation of the microbiota by dietary habits, and the potential therapeutic benefits of reshaping the gut bacterial landscape in context of metabolic disorders such as obesity.

7.
Cell Metab ; 24(3): 434-446, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27568549

RESUMEN

Caloric restriction (CR) extends lifespan from yeast to mammals, delays onset of age-associated diseases, and improves metabolic health. We show that CR stimulates development of functional beige fat within the subcutaneous and visceral adipose tissue, contributing to decreased white fat and adipocyte size in lean C57BL/6 and BALB/c mice kept at room temperature or at thermoneutrality and in obese leptin-deficient mice. These metabolic changes are mediated by increased eosinophil infiltration, type 2 cytokine signaling, and M2 macrophage polarization in fat of CR animals. Suppression of the type 2 signaling, using Il4ra(-/-), Stat6(-/-), or mice transplanted with Stat6(-/-) bone marrow-derived hematopoietic cells, prevents the CR-induced browning and abrogates the subcutaneous fat loss and the metabolic improvements induced by CR. These results provide insights into the overall energy homeostasis during CR, and they suggest beige fat development as a common feature in conditions of negative energy balance.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Restricción Calórica , Inmunidad , Transducción de Señal/inmunología , Tejido Adiposo Beige/metabolismo , Animales , Dieta , Conducta Alimentaria , Glucosa/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Obesos , Grasa Subcutánea/metabolismo , Termogénesis
8.
Genome Med ; 8(1): 101, 2016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27716393

RESUMEN

BACKGROUND: The genetic regulation of metabolic phenotypes (i.e., metabotypes) in type 2 diabetes mellitus occurs through complex organ-specific cellular mechanisms and networks contributing to impaired insulin secretion and insulin resistance. Genome-wide gene expression profiling systems can dissect the genetic contributions to metabolome and transcriptome regulations. The integrative analysis of multiple gene expression traits and metabolic phenotypes (i.e., metabotypes) together with their underlying genetic regulation remains a challenge. Here, we introduce a systems genetics approach based on the topological analysis of a combined molecular network made of genes and metabolites identified through expression and metabotype quantitative trait locus mapping (i.e., eQTL and mQTL) to prioritise biological characterisation of candidate genes and traits. METHODS: We used systematic metabotyping by 1H NMR spectroscopy and genome-wide gene expression in white adipose tissue to map molecular phenotypes to genomic blocks associated with obesity and insulin secretion in a series of rat congenic strains derived from spontaneously diabetic Goto-Kakizaki (GK) and normoglycemic Brown-Norway (BN) rats. We implemented a network biology strategy approach to visualize the shortest paths between metabolites and genes significantly associated with each genomic block. RESULTS: Despite strong genomic similarities (95-99 %) among congenics, each strain exhibited specific patterns of gene expression and metabotypes, reflecting the metabolic consequences of series of linked genetic polymorphisms in the congenic intervals. We subsequently used the congenic panel to map quantitative trait loci underlying specific mQTLs and genome-wide eQTLs. Variation in key metabolites like glucose, succinate, lactate, or 3-hydroxybutyrate and second messenger precursors like inositol was associated with several independent genomic intervals, indicating functional redundancy in these regions. To navigate through the complexity of these association networks we mapped candidate genes and metabolites onto metabolic pathways and implemented a shortest path strategy to highlight potential mechanistic links between metabolites and transcripts at colocalized mQTLs and eQTLs. Minimizing the shortest path length drove prioritization of biological validations by gene silencing. CONCLUSIONS: These results underline the importance of network-based integration of multilevel systems genetics datasets to improve understanding of the genetic architecture of metabotype and transcriptomic regulation and to characterize novel functional roles for genes determining tissue-specific metabolism.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Metaboloma , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Transcriptoma , Animales , Animales Congénicos , Mapeo Cromosómico , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Redes y Vías Metabólicas , Anotación de Secuencia Molecular , Ratas Endogámicas BN , Biología de Sistemas
9.
Nat Med ; 21(12): 1497-1501, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26569380

RESUMEN

Brown adipose tissue (BAT) promotes a lean and healthy phenotype and improves insulin sensitivity. In response to cold or exercise, brown fat cells also emerge in the white adipose tissue (WAT; also known as beige cells), a process known as browning. Here we show that the development of functional beige fat in the inguinal subcutaneous adipose tissue (ingSAT) and perigonadal visceral adipose tissue (pgVAT) is promoted by the depletion of microbiota either by means of antibiotic treatment or in germ-free mice. This leads to improved glucose tolerance and insulin sensitivity and decreased white fat and adipocyte size in lean mice, obese leptin-deficient (ob/ob) mice and high-fat diet (HFD)-fed mice. Such metabolic improvements are mediated by eosinophil infiltration, enhanced type 2 cytokine signaling and M2 macrophage polarization in the subcutaneous white fat depots of microbiota-depleted animals. The metabolic phenotype and the browning of the subcutaneous fat are impaired by the suppression of type 2 cytokine signaling, and they are reversed by recolonization of the antibiotic-treated or germ-free mice with microbes. These results provide insight into the microbiota-fat signaling axis and beige-fat development in health and metabolic disease.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Microbiota , Obesidad/microbiología , Obesidad/patología , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Blanco/efectos de los fármacos , Animales , Tamaño de la Célula/efectos de los fármacos , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Vida Libre de Gérmenes , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Insulina/farmacología , Grasa Intraabdominal/efectos de los fármacos , Grasa Intraabdominal/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microbiota/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Grasa Subcutánea/efectos de los fármacos , Grasa Subcutánea/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA