Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Opt Express ; 30(9): 15659-15668, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35473281

RESUMEN

In this paper, we present a simple cascaded Fabry-Perot interferometer (FPI) that can be used to measure in real-time the refractive index (RI) and length variation in silica optical fibers caused due to external physical parameters, such as temperature, strain, and radiation. As a proof-of-concept, we experimentally demonstrate real-time monitoring of temperature effects on the RI and length and measure the thermo-optic coefficient (TOC) and thermal expansion coefficient (TEC) by using the cascaded FPI within a temperature range of 21-486°C. The experimental results provide a TEC of 5.53 × 10-7/°C and TOC of 4.28 × 10-6/°C within the specified temperature range. Such a simple cascaded FPI structure will enable the design of optical sensors to correct for measurement errors by understanding the change in RI and length of optical fiber caused by environment parameters.

2.
Opt Express ; 30(16): 28470-28478, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36299041

RESUMEN

We demonstrate a real-time, reusable, and reversible integrated optical sensor for temperature monitoring within harsh environments. The sensor architecture combines the phase change property of chalcogenide glasses (ChG) with the high-density integration advantages of high index silicon waveguides. To demonstrate sensor feasibility, ChG composition Ge40S60, which is characterized by a sharp phase transition from amorphous to crystalline phase around 415 °C, is deposited over a 50 µm section of a single mode optical waveguide. The phase transition changes the behavior of Ge40S60 from a low loss to high loss material, thus significantly affecting the hybrid waveguide loss around the phase transition temperature. A transmission power drop of over 40dB in the crystalline phase compared to the amorphous phase is experimentally measured. Moreover, we recover the amorphous phase through the application of an electrical pulse, thus showing the reversible nature of our compact temperature sensor. Through integrating multiple compositions of ChG with well-defined phases transition temperatures over a silicon waveguide array, it is possible to determine, in real-time, the temperature evolution within a harsh environment, such as within a nuclear reactor cladding.

3.
Sensors (Basel) ; 21(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203744

RESUMEN

Optical fiber sensors (OFS) are a potential candidate for monitoring physical parameters in nuclear environments. However, under an irradiation field the optical response of the OFS is modified via three primary mechanisms: (i) radiation-induced attenuation (RIA), (ii) radiation-induced emission (RIE), and (iii) radiation-induced compaction (RIC). For resonance-based sensors, RIC plays a significant role in modifying their performance characteristics. In this paper, we numerically investigate independently the effects of RIC and RIA on three types of OFS widely considered for radiation environments: fiber Bragg grating (FBG), long-period grating (LPG), and Fabry-Perot (F-P) sensors. In our RIC modeling, experimentally calculated refractive index (RI) changes due to low-dose radiation are extrapolated using a power law to calculate density changes at high doses. The changes in RI and length are subsequently calculated using the Lorentz-Lorenz relation and an established empirical equation, respectively. The effects of both the change in the RI and length contraction on OFS are modeled for both low and high doses using FIMMWAVE, a commercially available vectorial mode solver. An in-depth understanding of how radiation affects OFS may reveal various potential OFS applications in several types of radiation environments, such as nuclear reactors or in space.

4.
Sensors (Basel) ; 21(24)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34960286

RESUMEN

Neutron and gamma irradiation is known to compact silica, resulting in macroscopic changes in refractive index (RI) and geometric structure. The change in RI and linear compaction in a radiation environment is caused by three well-known mechanisms: (i) radiation-induced attenuation (RIA), (ii) radiation-induced compaction (RIC), and (iii) radiation-induced emission (RIE). These macroscopic changes induce errors in monitoring physical parameters such as temperature, pressure, and strain in optical fiber-based sensors, which limit their application in radiation environments. We present a cascaded Fabry-Perot interferometer (FPI) technique to measure macroscopic properties, such as radiation-induced change in RI and length compaction in real time to actively account for sensor drift. The proposed cascaded FPI consists of two cavities: the first cavity is an air cavity, and the second is a silica cavity. The length compaction from the air cavity is used to deduce the RI change within the silica cavity. We utilize fast Fourier transform (FFT) algorithm and two bandpass filters for the signal extraction of each cavity. Inclusion of such a simple cascaded FPI structure will enable accurate determination of physical parameters under the test.


Asunto(s)
Interferometría , Fibras Ópticas , Diseño de Equipo , Refractometría , Temperatura
5.
Sensors (Basel) ; 21(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668970

RESUMEN

We demonstrate a novel chalcogenide glass (ChG)-capped optical fiber temperature sensor capable of operating within harsh environment. The sensor architecture utilizes the heat-induced phase change (amorphous-to-crystalline) property of ChGs, which rapidly (80-100 ns) changes the optical properties of the material. The sensor response to temperature variation around the phase change of the ChG cap at the tip of the fiber provides abrupt changes in the reflected power intensity. This temperature is indicative of the temperature at the sensing node. We present the sensing performance of six different compositions of ChGs and a method to interpret the temperature profile between 440 ∘C and 600 ∘C in real-time using an array structure. The unique radiation-hardness property of ChGs makes the devices compatible with high-temperature and high-radiation environments, such as monitoring the cladding temperature of Light Water (LWR) or Sodium-cooled Fast (SFR) reactors.

6.
Sensors (Basel) ; 20(19)2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33023160

RESUMEN

Graphene and carbon nanotube (CNT)-based gas/vapor sensors have gained much traction for numerous applications over the last decade due to their excellent sensing performance at ambient conditions. Inkjet printing various forms of graphene (reduced graphene oxide or modified graphene) and CNT (single-wall nanotubes (SWNTs) or multiwall nanotubes (MWNTs)) nanomaterials allows fabrication onto flexible substrates which enable gas sensing applications in flexible electronics. This review focuses on their recent developments and provides an overview of the state-of-the-art in inkjet printing of graphene and CNT based sensors targeting gases, such as NO2, Cl2, CO2, NH3, and organic vapors. Moreover, this review presents the current enhancements and challenges of printing CNT and graphene-based gas/vapor sensors, the role of defects, and advanced printing techniques using these nanomaterials, while highlighting challenges in reliability and reproducibility. The future potential and outlook of this rapidly growing research are analyzed as well.

7.
Opt Lett ; 41(23): 5466-5469, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27906214

RESUMEN

In an on-chip silicon-organic hybrid electro-optic (EO) modulator, the mode overlap with EO materials, in-device effective r33, and propagation loss are among the most critical factors that determine the performance of the modulator. Various waveguide structures have been proposed to optimize these factors, yet there is a lack of comprehensive consideration on all of them. In this Letter, a one-dimensional (1D) photonic crystal (PC) slot waveguide structure is proposed that takes all these factors into consideration. The proposed structure takes advantage of the strong mode confinement within a low-index region in a conventional slot waveguide and the slow-light enhancement from the 1D PC structure. Its simple geometry makes it robust to resist fabrication imperfections and helps reduce the propagation loss. Using it as a phase shifter in a Mach-Zehnder interferometer structure, an integrated silicon-organic hybrid EO modulator was experimentally demonstrated. The observed effective EO coefficient is as high as 490 pm/V. The measured half-wave voltage and length product is less than 1 V·cm and can be further improved. A potential bandwidth of 61 GHz can be achieved and further improved by tailoring the doping profile. The proposed structure offers a competitive novel phase-shifter design, which is simple, highly efficient, and with low optical loss, for on-chip silicon-organic hybrid EO modulators.

8.
Opt Express ; 23(3): 2487-510, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25836116

RESUMEN

Silicon photonics has experienced phenomenal transformations over the last decade. In this paper, we present some of the notable advances in silicon-based passive and active optical interconnect components, and highlight some of our key contributions. Light is also cast on few other parallel technologies that are working in tandem with silicon-based structures, and providing unique functions not achievable with any single system acting alone. With an increasing utilization of CMOS foundries for silicon photonics fabrication, a viable path for realizing extremely low-cost integrated optoelectronics has been paved. These advances are expected to benefit several application domains in the years to come, including communication networks, sensing, and nonlinear systems.

9.
Opt Lett ; 40(7): 1563-6, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25831385

RESUMEN

Traditional silicon waveguides are defined by waveguide trenches on either side of the high-index silicon core that leads to fluid leakage orifices for over-layed microfluidic channels. Closing the orifices needs additional fabrication steps which may include oxide deposition and planarization. We experimentally demonstrated a new type of microfluidic channel design with ultralow-loss waveguide crossings (0.00248 dB per crossings). The waveguide crossings and all other on-chip passive-waveguide components are fabricated in one step with no additional planarization steps which eliminates any orifices and leads to leak-free fluid flow. Such designs are applicable in all optical-waveguide-based sensing applications where the analyte must be flowed over the sensor. The new channel design was demonstrated in a L55 photonic crystal sensor operating between 1540 and 1580 nm.


Asunto(s)
Técnicas Analíticas Microfluídicas/instrumentación , Fotones , Dimetilpolisiloxanos
10.
Opt Express ; 22(17): 20678-90, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25321272

RESUMEN

We design, fabricate and experimentally demonstrate a highly efficient adiabatic mode converter for coupling light into a silicon slot waveguide with a slot width as large as 320 nm. This strip-to-slot mode converter is optimized to provide a measured insertion loss as low as 0.08 dB. Our mode converter provides 0.1 dB lower loss compared to a conventional V-shape mode converter. This mode converter is used to couple light into and out of a 320 nm slot photonic crystal waveguide, and it is experimentally shown to improve the coupling efficiency up to 3.5 dB compared to the V-shape mode converter, over the slow-light wavelength region.

11.
Opt Lett ; 39(4): 941-4, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24562247

RESUMEN

A 16-element optical phased array integrated on chip is presented for achieving two-dimensional (2D) optical beam steering. The device is fabricated on the silicon-on-insulator platform with a 250 nm silicon device layer. Steering is achieved via a combination of wavelength tuning and thermo-optic phase shifting with a switching power of P(π)=20 mW per channel. Using a silicon waveguide grating with a polycrystalline silicon overlay enables narrow far field beam widths while mitigating the precise etching needed for conventional shallow etch gratings. Using this system, 2D steering across a 20°×15° field of view is achieved with a sidelobe level better than 10 dB and with beam widths of 1.2°×0.5°.

12.
Opt Lett ; 39(10): 3070-3, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24978276

RESUMEN

We demonstrate subwavelength bidirectional grating (SWG) coupled slot waveguide fabricated in silicon-on-sapphire for transverse electric polarized wave operation at 3.4 µm wavelength. Coupling efficiency of 29% for SWG coupler is experimentally achieved. Propagation loss of 11 dB/cm has been experimentally obtained for slot waveguides. Two-step taper mode converters with an insertion loss of 0.13 dB are used to gradually convert the strip waveguide mode into slot waveguide mode.

13.
Small Methods ; : e2301596, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470204

RESUMEN

Printed electronics have made remarkable progress in recent years and inkjet printing (IJP) has emerged as one of the leading methods for fabricating printed electronic devices. However, challenges such as nozzle clogging, and strict ink formulation constraints have limited their widespread use. To address this issue, a novel nozzle-free printing technology is explored, which is enabled by laser-generated focused ultrasound, as a potential alternative printing modality called Shock-wave Jet Printing (SJP). Specifically, the performance of SJP-printed and IJP-printed bottom-gated carbon nanotube (CNT) thin film transistors (TFTs) is compared. While IJP required ten print passes to achieve fully functional devices with channel dimensions ranging from tens to hundreds of micrometers, SJP achieved comparable performance with just a single pass. For optimized devices, SJP demonstrated six times higher maximum mobility than IJP-printed devices. Furthermore, the advantages of nozzle-free printing are evident, as SJP successfully printed stored and unsonicated inks, delivering moderate electrical performance, whereas IJP suffered from nozzle clogging due to CNT agglomeration. Moreover, SJP can print significantly longer CNTs, spanning the entire range of tube lengths of commercially available CNT ink. The findings from this study contribute to the advancement of nanomaterial printing, ink formulation, and the development of cost-effective printable electronics.

14.
ACS Mater Au ; 4(1): 65-73, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38221917

RESUMEN

Conductive and biofriendly gold nanomaterial inks are highly desirable for printed electronics, biosensors, wearable electronics, and electrochemical sensor applications. Here, we demonstrate the scalable synthesis of stable gold nanoparticle inks with low-temperature sintering using simple chemical processing steps. Multiprinter compatible aqueous gold nanomaterial inks were formulated, achieving resistivity as low as ∼10-6 Ω m for 400 nm thick films sintered at 250 °C. Printed lines with a resolution of <20 µm and minimal overspray were obtained using an aerosol jet printer. The resistivity of the printed patterns reached ∼9.59 ± 1.2 × 10-8 Ω m after sintering at 400 °C for 45 min. Our aqueous-formulated gold nanomaterial inks are also compatible with inkjet printing, extending the design space and manufacturability of printed and flexible electronics where metal work functions and chemically inert films are important for device applications.

15.
Opt Express ; 21(1): 60-9, 2013 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-23388896

RESUMEN

We demonstrate intra- and inter-board level optical interconnects using polymer waveguides and waveguide couplers consisting of both 45 degree total internal reflection (TIR) mirrors and inkjet-printed micro-lenses. Surface normal couplers consisting of 50 µm × 50 µm waveguides with embedded 45 degree mirrors are fabricated using a nickel mold imprint. Micro-lenses, 70 µm in diameter, are inkjet-printed on top of the mirrors. We characterize the optical transmission between waveguides located on different boards in terms of insertion loss, mirror coupling loss, and free space propagation loss as a function of interconnection distance in free space. Each mirror contributes 1.88 dB loss to the system, corresponding to 65% efficiency. The printed micro-lenses improve the transmission by 2-4 dB (per coupler). Data transmission at 10 Gbps reveals that inter-board interconnects has a bit error rate (BER) of 1.1 × 10(-10) and 6.2 × 10(-13) without and with the micro-lenses, respectively.

16.
Opt Express ; 21(2): 2110-7, 2013 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-23389191

RESUMEN

We demonstrate a printable Thermo-Optic (TO) switch utilizing imprinting and ink-jet printing techniques. The material system, optical and thermal designs are discussed. Imprinting technique is used to transfer a 2 × 2 switch pattern from a flexible mold into a UV15LV polymer bottom cladding. Ink-jet printing is further used to deposit a SU-8 polymer core layer on top. Operation of the switch is experimentally demonstrated up to a frequency of 1 kHz, with switching time less than 0.5 ms. The printing technique demonstrates great potential for high throughput, roll-to-roll fabrication of low cost photonic devices.


Asunto(s)
Periféricos de Computador , Compuestos Epoxi/química , Impresión Molecular/instrumentación , Impresión Molecular/métodos , Dispositivos Ópticos , Polímeros/química , Refractometría/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Ensayo de Materiales
17.
Opt Lett ; 38(10): 1597-9, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23938881

RESUMEN

The present work demonstrates an electro-optic polymer-based Mach-Zehnder (MZ) modulator fabricated utilizing advanced ultraviolet (UV) imprinting and aligned ink-jet printing technologies for patterning and layer deposition. The bottom electrode layer is designed and directly ink-jet printed on the substrate to form the patterned layer. The waveguide structure is formed into a bottom cladding polymer using a transparent flexible mold-based UV imprinting method. All other layers can be ink-jet printed. The top electrode is aligned and printed over the MZ arm. The modulator demonstrates a V-pi of 8 V at 3 kHz. This technology shows great potential in minimizing the fabrication complexity and roll-to-roll compatibility for manufacturing low cost, lightweight, and conformal modulators at high throughput.

18.
Opt Lett ; 38(18): 3588-91, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24104821

RESUMEN

We investigate the waveguide dispersion of subwavelength structures, and propose that the waveguide dispersion can be reduced by reducing the period of subwavelength structures. A 3 dB bandwidth increment of 20% has been observed by introducing this concept into previously demonstrated grating couplers. To fully exploit the bandwidth merits of the structures, gratings with interleaved subwavelength structures were designed and fabricated. Two typical types of interleaving geometries have been investigated. Both demonstrated a 1 dB bandwidth ∼70 nm, a 3 dB bandwidth ∼117 nm, and a peak efficiency ∼-5.1 dB at 1570 nm for transverse-electric polarized light. The simulation confirms that the dispersion engineering adds an extra 12 nm to the 1 dB bandwidth.

19.
Nanoscale ; 15(14): 6596-6606, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36916135

RESUMEN

Thermoelectric generators (TEGs) convert temperature differences into electrical power and are attractive among energy harvesting devices due to their autonomous and silent operation. While thermoelectric materials have undergone substantial improvements in material properties, a reliable and cost-effective fabrication method suitable for microgravity and space applications remains a challenge, particularly as commercial space flight and extended crewed space missions increase in frequency. This paper demonstrates the use of plasma-jet printing (PJP), a gravity-independent, electromagnetic field-assisted printing technology, to deposit colloidal thermoelectric nanoflakes with engineered nanopores onto flexible substrates at room temperature. We observe substantial improvements in material adhesion and flexibility with less than 2% and 11% variation in performance after 10 000 bending cycles over 25 mm and 8 mm radii of curvature, respectively, as compared to previously reported TE films. Our printed films demonstrate electrical conductivity of 2.5 × 103 S m-1 and a power factor of 70 µW m-1 K-2 at room temperature. To our knowledge, these are the first reported values of plasma-jet printed thermoelectric nanomaterial films. This advancement in plasma jet printing significantly promotes the development of nanoengineered 2D and layered materials not only for energy harvesting but also for the development of large-scale flexible electronics and sensors for both space and commercial applications.

20.
Microsyst Nanoeng ; 9: 51, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152863

RESUMEN

Surface acoustic wave (SAW) devices are a subclass of micro-electromechanical systems (MEMS) that generate an acoustic emission when electrically stimulated. These transducers also work as detectors, converting surface strain into readable electrical signals. Physical properties of the generated SAW are material dependent and influenced by external factors like temperature. By monitoring temperature-dependent scattering parameters a SAW device can function as a thermometer to elucidate substrate temperature. Traditional fabrication of SAW sensors requires labor- and cost- intensive subtractive processes that produce large volumes of hazardous waste. This study utilizes an innovative aerosol jet printer to directly write consistent, high-resolution, silver comb electrodes onto a Y-cut LiNbO3 substrate. The printed, two-port, 20 MHz SAW sensor exhibited excellent linearity and repeatability while being verified as a thermometer from 25 to 200 ∘C. Sensitivities of the printed SAW thermometer are - 96.9 × 1 0 - 6 ∘ C-1 and - 92.0 × 1 0 - 6 ∘ C-1 when operating in pulse-echo mode and pulse-receiver mode, respectively. These results highlight a repeatable path to the additive fabrication of compact high-frequency SAW thermometers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA