Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(13): e2318969121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38513105

RESUMEN

Autotrophic theories for the origin of metabolism posit that the first cells satisfied their carbon needs from CO2 and were chemolithoautotrophs that obtained their energy and electrons from H2. The acetyl-CoA pathway of CO2 fixation is central to that view because of its antiquity: Among known CO2 fixing pathways it is the only one that is i) exergonic, ii) occurs in both bacteria and archaea, and iii) can be functionally replaced in full by single transition metal catalysts in vitro. In order to operate in cells at a pH close to 7, however, the acetyl-CoA pathway requires complex multi-enzyme systems capable of flavin-based electron bifurcation that reduce low potential ferredoxin-the physiological donor of electrons in the acetyl-CoA pathway-with electrons from H2. How can the acetyl-CoA pathway be primordial if it requires flavin-based electron bifurcation? Here, we show that native iron (Fe0), but not Ni0, Co0, Mo0, NiFe, Ni2Fe, Ni3Fe, or Fe3O4, promotes the H2-dependent reduction of aqueous Clostridium pasteurianum ferredoxin at pH 8.5 or higher within a few hours at 40 °C, providing the physiological function of flavin-based electron bifurcation, but without the help of enzymes or organic redox cofactors. H2-dependent ferredoxin reduction by iron ties primordial ferredoxin reduction and early metabolic evolution to a chemical process in the Earth's crust promoted by solid-state iron, a metal that is still deposited in serpentinizing hydrothermal vents today.


Asunto(s)
Ferredoxinas , Hierro , Ferredoxinas/metabolismo , Hierro/metabolismo , Hidrógeno/metabolismo , Electrones , Acetilcoenzima A/metabolismo , Dióxido de Carbono/metabolismo , Oxidación-Reducción , Flavinas/metabolismo
2.
Arch Biochem Biophys ; 734: 109498, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36572346

RESUMEN

Aldehyde-deformylating oxygenase (ADO) is a non-heme di-iron enzyme that catalyzes the deformylation of aldehydes to generate alkanes/alkenes. In this study, we report for the first time that under anaerobic or limited oxygen conditions, Prochlorococcus marinus (PmADO) can generate full-length fatty alcohols from fatty aldehydes without eliminating a carbon unit. In contrast to ADO's native activity, which requires electrons from the Fd/FNR electron transfer complex, ADO's aldehyde reduction activity requires only NAD(P)H. Our results demonstrated that the yield of alcohol products could be affected by oxygen concentration and the type of aldehyde. Under strictly anaerobic conditions, yields of octanol were up to 31%. Moreover, metal cofactors are not involved in the aldehyde reductase activity of PmADO because the yields of alcohols obtained from apoenzyme and holoenzyme treated with various metals were similar under anaerobic conditions. In addition, PmADO prefers medium-chain aldehydes, specifically octanal (kcat/Km around 15 × 10-3 µM-1min-1). The findings herein highlight a new activity of PmADO, which may be applied as a biocatalyst for the industrial synthesis of fatty alcohols.


Asunto(s)
Aldehído Reductasa , Cianobacterias , Alcoholes Grasos , Oxigenasas , Aldehídos , Oxígeno
3.
BMC Oral Health ; 23(1): 288, 2023 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-37179287

RESUMEN

BACKGROUND: The aim of this study was to investigate the effect of trehalose oral spray to relieve radiation-induced xerostomia on a randomized controlled trial (RCT). METHODS: Prior to RCT, the effect of trehalose (5-20%) on the epithelial growth of fetal mouse salivary gland (SG) explants was evaluated to confirm if 10% trehalose exerted the best epithelial outcomes. Participants who completed radiotherapy for head and neck cancer (HNC) treatment were enrolled in a double-blind RCT, according to inclusion and exclusion criteria as per the CONSORT statement. The experimental group (n = 35) received 10% trehalose spray, while the control group (n = 35) received carboxymethylcellulose (CMC) spray to apply intra-orally 4 times/day for 14 days. Salivary pH and unstimulated salivary flow rate were recorded pre- and post-interventions. The Xerostomia-related Quality of Life scale (XeQoLs) was filled, and scores assessed post-interventions. RESULTS: In the SG explant model, pro-acinar epithelial growth and mitosis was supported by 10% topical trehalose. As for RCT outcomes, salivary pH and unstimulated salivary flow rate were significantly improved after use of 10% trehalose spray when compared to CMC (p < 0.05). Participants reported an improvement of XeQoLs dimension scores after using trehalose or CMC oral sprays in terms of physical, pain/discomfort, and psychological dimensions (p < 0.05), but not social (p > 0.05). When comparing between CMC and trehalose sprays, XeQoLs total scores were not statistically different (p > 0.05). CONCLUSIONS: The 10% trehalose spray improved salivary pH, unstimulated salivary flow rate, and the quality-of-life dimensions linked with physical, pain/discomfort, and psychological signs. The clinical efficacy of 10% trehalose spray was equivalent with CMC-based saliva substitutes for relieving radiation-induced xerostomia; therefore, trehalose may be suggested in alternative to CMC-based oral spray.(Thai Clinical Trials Registry; https://www.thaiclinicaltrials.org/ TCTR20190817004).


Asunto(s)
Carboximetilcelulosa de Sodio , Neoplasias de Cabeza y Cuello , Trehalosa , Xerostomía , Carboximetilcelulosa de Sodio/uso terapéutico , Neoplasias de Cabeza y Cuello/radioterapia , Vaporizadores Orales , Trehalosa/farmacología , Trehalosa/uso terapéutico , Xerostomía/tratamiento farmacológico , Xerostomía/etiología , Humanos
4.
J Biol Chem ; 296: 100124, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33239361

RESUMEN

Electron bifurcation uses free energy from exergonic redox reactions to power endergonic reactions. ß-FAD of the electron transfer flavoprotein (EtfAB) from the anaerobic bacterium Acidaminococcus fermentans bifurcates the electrons of NADH, sending one to the low-potential ferredoxin and the other to the high-potential α-FAD semiquinone (α-FAD•-). The resultant α-FAD hydroquinone (α-FADH-) transfers one electron further to butyryl-CoA dehydrogenase (Bcd); two such transfers enable Bcd to reduce crotonyl-CoA to butyryl-CoA. To get insight into the mechanism of these intricate reactions, we constructed an artificial reaction only with EtfAB containing α-FAD or α-FAD•- to monitor formation of α-FAD•- or α-FADH-, respectively, using stopped flow kinetic measurements. In the presence of α-FAD, we observed that NADH transferred a hydride to ß-FAD at a rate of 920 s-1, yielding the charge-transfer complex NAD+:ß-FADH- with an absorbance maximum at 650 nm. ß-FADH- bifurcated one electron to α-FAD and the other electron to α-FAD of a second EtfAB molecule, forming two stable α-FAD•-. With α-FAD•-, the reduction of ß-FAD with NADH was 1500 times slower. Reduction of ß-FAD in the presence of α-FAD displayed a normal kinetic isotope effect (KIE) of 2.1, whereas the KIE was inverted in the presence of α-FAD•-. These data indicate that a nearby radical (14 Å apart) slows the rate of a hydride transfer and inverts the KIE. This unanticipated flavin chemistry is not restricted to Etf-Bcd but certainly occurs in other bifurcating Etfs found in anaerobic bacteria and archaea.


Asunto(s)
Acidaminococcus/metabolismo , Proteínas Bacterianas/metabolismo , Flavoproteínas Transportadoras de Electrones/metabolismo , Flavinas/metabolismo , Transporte de Electrón , Cinética , Oxidación-Reducción , Filogenia
5.
J Biol Chem ; 296: 100467, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33639166

RESUMEN

The C1 (reductase) subunit of 4-hydroxy-phenylacetate (4-HPA) 3-hydroxylase (HPAH) from the soil-based bacterium Acinetobacterbaumannii catalyzes NADH oxidation by molecular oxygen, with hydrogen peroxide as a by-product. 4-HPA is a potent allosteric modulator of C1, but also a known urinary biomarker for intestinal bacterial imbalance and for some cancers and brain defects. We thus envisioned that C1 could be used to facilitate 4-HPA detection. The proposed test protocol is simple and in situ and involves addition of NADH to C1 in solution, with or without 4-HPA, and direct acquisition of the H2O2 current with an immersed Prussian Blue-coated screen-printed electrode (PB-SPE) assembly. We confirmed that cathodic H2O2 amperometry at PB-SPEs is a reliable electrochemical assay for intrinsic and allosterically modulated redox enzyme activity. We further validated this approach for quantitative NADH electroanalysis and used it to evaluate the activation of NADH oxidation of C1 by 4-HPA and four other phenols. Using 4-HPA, the most potent effector, allosteric activation of C1 was related to effector concentration by a simple saturation function. The use of C1 for cathodic biosensor analysis of 4-HPA is the basis of the development of a simple and affordable clinical routine for assaying 4-HPA in the urine of patients with a related disease risk. Extension of this principle to work with other allosteric redox enzymes and their effectors is feasible.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Fenilacetatos/química , Acinetobacter baumannii/enzimología , Acinetobacter baumannii/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Biomarcadores , Catálisis , Electrodos , Humanos , Peróxido de Hidrógeno/química , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , NAD/química , Oxidación-Reducción , Oxidorreductasas/metabolismo , Fenilacetatos/metabolismo
6.
BMC Oral Health ; 22(1): 58, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246095

RESUMEN

BACKGROUND: Although topical steroids are an effective treatment for oral lichen planus, they can have suppressive effects on oral immunity and predispose the patients to Candida overgrowth. Lactoferrin is a crucial local immunity protein in the oral cavity with important antimicrobial activity. The aim of this study was to prospectively investigate salivary lactoferrin secretion levels and Candida colonization in oral lichen planus patients treated with fluocinolone acetonide 0.1% in orabase. METHODS: Saliva samples were collected from 15 oral lichen planus subjects who had never received topical steroid treatment prior to this study and 15 healthy volunteers to determine their salivary lactoferrin levels using an enzyme-linked immunosorbent assay and to investigate the presence of oral Candida species at baseline and 3 months after treatment with fluocinolone acetonide 0.1% in orabase. Statistical analysis was performed to compare lactoferrin secretion and Candida colonization levels between the groups using the Mann-Whitney U test for independent data or the Wilcoxon Signed-Rank test for paired data. RESULTS: The salivary lactoferrin secretion level was not significantly different between the control group and oral lichen planus patients or between before and after treatment with fluocinolone acetonide 0.1% in orabase (P > 0.05). Candida was detected in 11 (73.33%) healthy volunteers, 8 (53.33%) oral lichen planus patients before treatment, and 9 (60%) oral lichen planus patients after treatment with fluocinolone acetonide 0.1% in orabase. There was no significant difference in Candida counts between the groups (P > 0.05). CONCLUSION: Our study indicates that using fluocinolone acetonide 0.1% in orabase to treat oral lichen planus for 3 months did not affect salivary lactoferrin protein secretion or Candida carriage. Trial registration The trial was registered at the Thai Clinical Trials Registry (TCTR identifier: TCTR20200723002).


Asunto(s)
Lactoferrina , Liquen Plano Oral , Candida , Fluocinolona Acetonida/uso terapéutico , Humanos , Lactoferrina/metabolismo , Lactoferrina/uso terapéutico , Liquen Plano Oral/tratamiento farmacológico , Liquen Plano Oral/metabolismo , Estudios Prospectivos
7.
J Biol Chem ; 295(12): 3965-3981, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32014994

RESUMEN

Hydroxylation of substituted phenols by flavin-dependent monooxygenases is the first step of their biotransformation in various microorganisms. The reaction is thought to proceed via electrophilic aromatic substitution, catalyzed by enzymatic deprotonation of substrate, in single-component hydroxylases that use flavin as a cofactor (group A). However, two-component hydroxylases (group D), which use reduced flavin as a co-substrate, are less amenable to spectroscopic investigation. Herein, we employed 19F NMR in conjunction with fluorinated substrate analogs to directly measure pKa values and to monitor protein events in hydroxylase active sites. We found that the single-component monooxygenase 3-hydroxybenzoate 6-hydroxylase (3HB6H) depresses the pKa of the bound substrate analog 4-fluoro-3-hydroxybenzoate (4F3HB) by 1.6 pH units, consistent with previously proposed mechanisms. 19F NMR was applied anaerobically to the two-component monooxygenase 4-hydroxyphenylacetate 3-hydroxylase (HPAH), revealing depression of the pKa of 3-fluoro-4-hydroxyphenylacetate by 2.5 pH units upon binding to the C2 component of HPAH. 19F NMR also revealed a pKa of 8.7 ± 0.05 that we attributed to an active-site residue involved in deprotonating bound substrate, and assigned to His-120 based on studies of protein variants. Thus, in both types of hydroxylases, we confirmed that binding favors the phenolate form of substrate. The 9 and 14 kJ/mol magnitudes of the effects for 3HB6H and HPAH-C2, respectively, are consistent with pKa tuning by one or more H-bonding interactions. Our implementation of 19F NMR in anaerobic samples is applicable to other two-component flavin-dependent hydroxylases and promises to expand our understanding of their catalytic mechanisms.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flavinas/metabolismo , Oxigenasas de Función Mixta/metabolismo , 4-Hidroxibenzoato-3-Monooxigenasa/genética , 4-Hidroxibenzoato-3-Monooxigenasa/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Biocatálisis , Dominio Catalítico , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Cinética , Oxigenasas de Función Mixta/genética , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Fenilacetatos/química , Fenilacetatos/metabolismo , Rhodococcus/enzimología , Especificidad por Sustrato
8.
J Biol Chem ; 292(12): 4818-4832, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28159841

RESUMEN

The accumulation of chlorophenols (CPs) in the environment, due to their wide use as agrochemicals, has become a serious environmental problem. These organic halides can be degraded by aerobic microorganisms, where the initial steps of various biodegradation pathways include an oxidative dechlorinating process in which chloride is replaced by a hydroxyl substituent. Harnessing these dechlorinating processes could provide an opportunity for environmental remediation, but detailed catalytic mechanisms for these enzymes are not yet known. To close this gap, we now report transient kinetics and product analysis of the dechlorinating flavin-dependent monooxygenase, HadA, from the aerobic organism Ralstonia pickettii DTP0602, identifying several mechanistic properties that differ from other enzymes in the same class. We first overexpressed and purified HadA to homogeneity. Analyses of the products from single and multiple turnover reactions demonstrated that HadA prefers 4-CP and 2-CP over CPs with multiple substituents. Stopped-flow and rapid-quench flow experiments of HadA with 4-CP show the involvement of specific intermediates (C4a-hydroperoxy-FAD and C4a-hydroxy-FAD) in the reaction, define rate constants and the order of substrate binding, and demonstrate that the hydroxylation step occurs prior to chloride elimination. The data also identify the non-productive and productive paths of the HadA reactions and demonstrate that product formation is the rate-limiting step. This is the first elucidation of the kinetic mechanism of a two-component flavin-dependent monooxygenase that can catalyze oxidative dechlorination of various CPs, and as such it will serve as the basis for future investigation of enzyme variants that will be useful for applications in detoxifying chemicals hazardous to human health.


Asunto(s)
Clorofenoles/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Oxigenasas de Función Mixta/metabolismo , Ralstonia pickettii/enzimología , Clorofenoles/química , Infecciones por Bacterias Gramnegativas/microbiología , Halogenación , Humanos , Cinética , Oxigenasas de Función Mixta/química , Ralstonia pickettii/química , Ralstonia pickettii/metabolismo , Especificidad por Sustrato
9.
Anal Chem ; 90(9): 5703-5711, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29633834

RESUMEN

We report the fabrication of an amperometric NADH biosensor system that employs an allosterically modulated bacterial reductase in an adapted osmium(III)-complex-modified redox polymer film for analyte quantification. Chains of complexed Os(III) centers along matrix polymer strings make electrical connection between the immobilized redox protein and a graphite electrode disc, transducing enzymatic oxidation of NADH into a biosensor current. Sustainable anodic signaling required (1) a redox polymer with a formal potential that matched the redox switch of the embedded reductase and avoided interfering redox interactions and (2) formation of a cross-linked enzyme/polymer film for stable biocatalyst entrapment. The activity of the chosen reductase is enhanced upon binding of an effector, i.e. p-hydroxy-phenylacetic acid ( p-HPA), allowing the acceleration of the substrate conversion rate on the sensor surface by in situ addition or preincubation with p-HPA. Acceleration of NADH oxidation amplified the response of the biosensor, with a 1.5-fold increase in the sensitivity of analyte detection, compared to operation without the allosteric modulator. Repetitive quantitative testing of solutions of known NADH concentration verified the performance in terms of reliability and analyte recovery. We herewith established the use of allosteric enzyme modulation and redox polymer-based enzyme electrode wiring for substrate biosensing, a concept that may be applicable to other allosteric enzymes.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Oxigenasas de Función Mixta/metabolismo , NAD/metabolismo , Oxidorreductasas/metabolismo , Polímeros/metabolismo , Acinetobacter baumannii/enzimología , Regulación Alostérica , Enzimas Inmovilizadas/metabolismo , Estructura Molecular , NAD/química , Oxidación-Reducción , Polímeros/química
10.
J Biol Chem ; 290(13): 8656-65, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25678710

RESUMEN

Serine hydroxymethyltransferase (SHMT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes a hydroxymethyl group transfer from L-serine to tetrahydrofolate (H4folate) to yield glycine and 5,10-methylenetetrahydrofolate (CH2-H4folate). SHMT is crucial for deoxythymidylate biosynthesis and a target for antimalarial drug development. Our previous studies indicate that PvSHMT catalyzes the reaction via a ternary complex mechanism. To define the kinetic mechanism of this catalysis, we explored the PvSHMT reaction by employing various methodologies including ligand binding, transient, and steady-state kinetics as well as product analysis by rapid-quench and HPLC/MS techniques. The results indicate that PvSHMT can bind first to either L-serine or H4folate. The dissociation constants for the enzyme·L-serine and enzyme·H4folate complexes were determined as 0.18 ± 0.08 and 0.35 ± 0.06 mM, respectively. The amounts of glycine formed after single turnovers of different preformed binary complexes were similar, indicating that the reaction proceeds via a random-order binding mechanism. In addition, the rate constant of glycine formation measured by rapid-quench and HPLC/MS analysis is similar to the kcat value (1.09 ± 0.05 s(-1)) obtained from the steady-state kinetics, indicating that glycine formation is the rate-limiting step of SHMT catalysis. This information will serve as a basis for future investigation on species-specific inhibition of SHMT for antimalarial drug development.


Asunto(s)
Glicina Hidroximetiltransferasa/química , Plasmodium vivax/enzimología , Proteínas Protozoarias/química , Serina/química , Ácido Fólico/química , Glicina , Concentración de Iones de Hidrógeno , Cinética , Unión Proteica , Termodinámica
11.
Biochemistry ; 53(25): 4084-6, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24878148

RESUMEN

The protonation status of the peroxide moiety in C4a-(hydro)peroxyflavin of p-hydroxyphenylacetate-3-hydroxylase can be directly monitored using transient kinetics. The pKa for the wild-type (WT) enzyme is 9.8 ± 0.2, while the values for the H396N, H396V, and H396A variants are 9.3 ± 0.1, 7.3 ± 0.2, and 7.1 ± 0.2, respectively. The hydroxylation efficiency of these mutants is lower than that of the WT enzyme. Solvent kinetic isotope effect studies indicate that proton transfer is not the rate-limiting step in the formation of C4a-OOH. All data suggest that His396 may act as an instantaneous proton provider for the proton-coupled electron transfer that occurs before the transition state of C4a-OOH formation.


Asunto(s)
Flavinas/química , Oxigenasas de Función Mixta/química , Protones , Concentración de Iones de Hidrógeno , Cinética , Oxigenasas de Función Mixta/genética , Mutación
12.
J Biol Chem ; 288(49): 35210-21, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24129570

RESUMEN

3-Hydroxybenzoate 6-hydroxylase (3HB6H) from Rhodococcus jostii RHA1 is an NADH-specific flavoprotein monooxygenase that catalyzes the para-hydroxylation of 3-hydroxybenzoate (3HB) to form 2,5-dihydroxybenzoate (2,5-DHB). Based on results from stopped-flow spectrophotometry, the reduced enzyme-3HB complex reacts with oxygen to form a C4a-peroxy flavin with a rate constant of 1.13 ± 0.01 × 10(6) m(-1) s(-1) (pH 8.0, 4 °C). This intermediate is subsequently protonated to form a C4a-hydroperoxyflavin with a rate constant of 96 ± 3 s(-1). This step shows a solvent kinetic isotope effect of 1.7. Based on rapid-quench measurements, the hydroxylation occurs with a rate constant of 36 ± 2 s(-1). 3HB6H does not exhibit substrate inhibition on the flavin oxidation step, a common characteristic found in most ortho-hydroxylation enzymes. The apparent kcat at saturating concentrations of 3HB, NADH, and oxygen is 6.49 ± 0.02 s(-1). Pre-steady state and steady-state kinetic data were used to construct the catalytic cycle of the reaction. The data indicate that the steps of product release (11.7 s(-1)) and hydroxylation (36 ± 2 s(-1)) partially control the overall turnover.


Asunto(s)
Proteínas Bacterianas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Rhodococcus/enzimología , Proteínas Bacterianas/química , Catálisis , Dominio Catalítico , Hidroxilación , Cinética , Oxigenasas de Función Mixta/química , Modelos Moleculares , NAD/metabolismo , Oxidación-Reducción , Espectrofotometría
13.
J Am Chem Soc ; 136(1): 241-53, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24368083

RESUMEN

Determination of the mechanism of dioxygen activation by flavoenzymes remains one of the most challenging problems in flavoenzymology for which the underlying theoretical basis is not well understood. Here, the reaction of reduced flavin and dioxygen catalyzed by pyranose 2-oxidase (P2O), a flavoenzyme oxidase that is unique in its formation of C4a-hydroperoxyflavin, was investigated by density functional calculations, transient kinetics, and site-directed mutagenesis. Based on work from the 1970s-1980s, the current understanding of the dioxygen activation process in flavoenzymes is believed to involve electron transfer from flavin to dioxygen and subsequent proton transfer to form C4a-hydroperoxyflavin. Our findings suggest that the first step of the P2O reaction is a single electron transfer coupled with a proton transfer from the conserved residue, His548. In fact, proton transfer enhances the electron acceptor ability of dioxygen. The resulting ·OOH of the open-shell diradical pair is placed in an optimal position for the formation of C4a-hydroperoxyflavin. Furthermore, the C4a-hydroperoxyflavin is stabilized by the side chains of Thr169, His548, and Asn593 in a "face-on" configuration where it can undergo a unimolecular reaction to generate H2O2 and oxidized flavin. The computational results are consistent with kinetic studies of variant forms of P2O altered at residues Thr169, His548, and Asn593, and kinetic isotope effects and pH-dependence studies of the wild-type enzyme. In addition, the calculated energy barrier is in agreement with the experimental enthalpy barrier obtained from Eyring plots. This work revealed new insights into the reaction of reduced flavin with dioxygen, demonstrating that the positively charged residue (His548) plays a significant role in catalysis by providing a proton for a proton-coupled electron transfer in dioxygen activation. The interaction around the N5-position of the C4a-hydroperoxyflavin is important for dictating the stability of the intermediate.


Asunto(s)
Deshidrogenasas de Carbohidratos/química , Deshidrogenasas de Carbohidratos/metabolismo , Flavoproteínas Transportadoras de Electrones/química , Flavinas/química , Oxígeno/química , Protones , Teoría Cuántica , Dominio Catalítico , Simulación por Computador , Estabilidad de Enzimas , Modelos Moleculares , Oxidación-Reducción , Temperatura
14.
Arch Biochem Biophys ; 555-556: 33-46, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24857824

RESUMEN

Two-component flavin-dependent enzymes are abundant in nature and are involved in a wide variety of biological reactions. These enzymes consist of a reductase which generates a reduced flavin and a monooxygenase that utilizes the reduced flavin as a substrate for monooxygenation. As reduced flavin is unstable and can be oxidized by oxygen, these enzymes must have a means to efficiently coordinate the transfer of the reduced flavin such that auto-oxidation can be minimized. Various types of experiments and methodologies have been used to probe the mode of reduced flavin transfer. Results from many systems have indicated that the transfer can be achieved by free diffusion and that the presence of one component has no influence on the kinetics of the other component. Contradicting results indicating that the transfer of the reduced flavin may be achieved via protein-protein mediation also exist. Regardless of the mode of reduced flavin transfer, these enzymes have a means to control their overall kinetics such that the reaction rate is slow when the demand for oxygenation is not high.


Asunto(s)
Dinitrocresoles/metabolismo , Oxidorreductasas/metabolismo , Antraquinonas/metabolismo , Proteínas Bacterianas/metabolismo , Difusión , Cinética , Luciferasas de la Bacteria/metabolismo , Oxigenasas de Función Mixta/metabolismo , Oxidación-Reducción
15.
FEBS J ; 291(3): 527-546, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37899720

RESUMEN

Xanthine oxidoreductase (XOR) catalyzes the oxidation of purines (hypoxanthine and xanthine) to uric acid. XOR is widely used in various therapeutic and biotechnological applications. In this study, we characterized the biophysical and mechanistic properties of a novel bacterial XOR from Sulfobacillus acidophilus TPY (SaXOR). Our results showed that SaXOR is a heterotrimer consisting of three subunits, namely XoA, XoB, and XoC, which denote the molybdenum cofactor (Moco), 2Fe-2S, and FAD-binding domains, respectively. XoC was found to be stable when co-expressed with XoB, forming an XoBC complex. Furthermore, we prepared a fusion of XoB and XoC via a flexible linker (fusXoBC) and evaluated its function in comparison to that of XoBC. Spectroscopic analysis revealed that XoB harbors two 2Fe-2S clusters, whereas XoC bears a single-bound FAD cofactor. Electron transfer from reduced forms of XoC, XoBC, and fusXoBC to molecular oxygen (O2 ) during oxidative half-reaction yielded no flavin semiquinones, implying ultrafast single-electron transfer from 2Fe-2Sred to FAD. In the presence of XoA, XoBC and fusXoBC exhibited comparable XoA affinity and exploited a shared overall mechanism. Nonetheless, the linkage may accelerate the two-step, single-electron transfer cascade from 2Fe-2Sred to FAD while augmenting protein stability. Collectively, our findings provide novel insights into SaXOR properties and oxidation mechanisms divergent from prior mammalian and bacterial XOR paradigms.


Asunto(s)
Clostridiales , Proteínas Hierro-Azufre , Xantina Deshidrogenasa , Animales , Xantina Deshidrogenasa/genética , Xantina Deshidrogenasa/metabolismo , Hierro/metabolismo , Oxidación-Reducción , Flavinas/metabolismo , Azufre/metabolismo , Proteínas Hierro-Azufre/metabolismo , Mamíferos/metabolismo
16.
Biochemistry ; 52(8): 1437-45, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23356577

RESUMEN

Pyranose 2-oxidase (P2O) from Trametes multicolor is a flavoenzyme that catalyzes the oxidation of d-glucose and other aldopyranose sugars at the C2 position by using O2 as an electron acceptor to form the corresponding 2-keto-sugars and H2O2. In this study, the effects of pH on the oxidative half-reaction of P2O were investigated using stopped-flow spectrophotometry. The results showed that flavin oxidation occurred via different pathways depending on the pH of the environment. At pH values lower than 8.0, reduced P2O reacts with O2 to form a C4a-hydroperoxyflavin intermediate, leading to elimination of H2O2. At pH 8.0 and higher, the majority of the reduced P2O reacts with O2 via a pathway that does not allow detection of the C4a-hydroperoxyflavin, and flavin oxidation occurs with decreased rate constants upon the rise in pH. The switching between the two modes of P2O oxidation is controlled by protonation of a group which has a pK(a) of 7.6 ± 0.1. Oxidation reactions of reduced P2O under rapid pH change as performed by stopped-flow mixing were different from the same reactions performed with enzyme pre-equilibrated at the same specified pH values, implying that the protonation of the group which controls the mode of flavin oxidation cannot be rapidly equilibrated with outside solvent. Using a double-mixing stopped-flow experiment, a rate constant for proton dissociation from the reaction site was determined to be 21.0 ± 0.4 s⁻¹.


Asunto(s)
Deshidrogenasas de Carbohidratos/metabolismo , Trametes/enzimología , Concentración de Iones de Hidrógeno , Cinética , Oxidación-Reducción , Oxígeno/metabolismo , Protones , Espectrofotometría
17.
Biochemistry ; 52(39): 6834-43, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24004065

RESUMEN

Bacterial luciferase (LuxAB) is a two-component flavin mononucleotide (FMN)-dependent monooxygenase that catalyzes the oxidation of reduced FMN (FMNH(-)) and a long-chain aliphatic aldehyde by molecular oxygen to generate oxidized FMN, the corresponding aliphatic carboxylic acid, and concomitant emission of light. The LuxAB reaction requires a flavin reductase to generate FMNH(-) to serve as a luciferin in its reaction. However, FMNH(-) is unstable and can react with oxygen to generate H2O2, so that it is important to transfer it efficiently to LuxAB. Recently, LuxG has been identified as a NADH:FMN oxidoreductase that supplies FMNH(-) to luciferase in vivo. In this report, the mode of transfer of FMNH(-) between LuxG from Photobacterium leiognathi TH1 and LuxABs from both P. leiognathi TH1 and Vibrio campbellii (PlLuxAB and VcLuxAB, respectively) was investigated using single-mixing and double-mixing stopped-flow spectrophotometry. The oxygenase component of p-hydroxyphenylacetate hydroxylase (C2) from Acinetobacter baumannii, which has no structural similarity to LuxAB, was used to measure the kinetics of release of FMNH(-) from LuxG. With all FMNH(-) acceptors used (C2, PlLuxAB, and VcLuxAB), the kinetics of FMN reduction on LuxG were the same, showing that LuxG releases FMNH(-) with a rate constant of 4.5-6 s(-1). Our data showed that the kinetics of binding of FMNH(-)to PlLuxAB and VcLuxAB and the subsequent reactions with oxygen were the same with either free FMNH(-) or FMNH(-) generated in situ by LuxG. These results strongly suggest that no complexes between LuxG and the various species are necessary to transfer FMNH(-) to the acceptors. The kinetics of the overall reactions and the individual rate constants correlate well with a free diffusion model for the transfer of FMNH(-) from LuxG to either LuxAB.


Asunto(s)
Proteínas Bacterianas/metabolismo , Difusión , Mononucleótido de Flavina/metabolismo , Luciferasas/metabolismo , Oxidorreductasas/metabolismo , Biocatálisis , Estructura Molecular , Photobacterium/enzimología , Vibrio/enzimología
18.
J Biol Chem ; 287(31): 26213-22, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22661720

RESUMEN

p-Hydroxyphenylacetate (HPA) 3-hydroxylase from Acinetobacter baumannii consists of a reductase component (C(1)) and an oxygenase component (C(2)). C(1) catalyzes the reduction of FMN by NADH to provide FMNH(-) as a substrate for C(2). The rate of reduction of flavin is enhanced ∼20-fold by binding HPA. The N-terminal domain of C(1) is homologous to other flavin reductases, whereas the C-terminal domain (residues 192-315) is similar to MarR, a repressor protein involved in bacterial antibiotic resistance. In this study, three forms of truncated C(1) variants and single site mutation variants of residues Arg-21, Phe-216, Arg-217, Ile-246, and Arg-247 were constructed to investigate the role of the C-terminal domain in regulating C(1). In the absence of HPA, the C(1) variant in which residues 179-315 were removed (t178C(1)) was reduced by NADH and released FMNH(-) at the same rates as wild-type enzyme carries out these functions in the presence of HPA. In contrast, variants with residues 231-315 removed behaved similarly to the wild-type enzyme. Thus, residues 179-230 are involved in repressing the production of FMNH(-) in the absence of HPA. These results are consistent with the C-terminal domain in the wild-type enzyme being an autoinhibitory domain that upon binding the effector HPA undergoes conformational changes to allow faster flavin reduction and release. Most of the single site variants investigated had catalytic properties similar to those of the wild-type enzyme except for the F216A variant, which had a rate of reduction that was not stimulated by HPA. F216A could be involved with HPA binding or in the required conformational change for stimulation of flavin reduction by HPA.


Asunto(s)
Acinetobacter baumannii/enzimología , Proteínas Bacterianas/química , Oxigenasas de Función Mixta/química , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Mononucleótido de Flavina/química , Cinética , Oxigenasas de Función Mixta/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , NAD/química , Oxidación-Reducción , Oxígeno/química , Fragmentos de Péptidos/química , Fenilacetatos/química , Estructura Terciaria de Proteína
19.
FEBS J ; 290(21): 5171-5195, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37522421

RESUMEN

The dimethyl sulfone monooxygenase system is a two-component flavoprotein, catalyzing the monooxygenation of dimethyl sulfone (DMSO2 ) by oxidative cleavage producing methanesulfinate and formaldehyde. The reductase component (DMSR) is a flavoprotein with FMN as a cofactor, catalyzing flavin reduction using NADH. The monooxygenase (DMSMO) uses reduced flavin from the reductase and oxygen for substrate monooxygenation. DMSMO can bind to FMN and FMNH- with a Kd of 17.4 ± 0.9 µm and 4.08 ± 0.8 µm, respectively. The binding of FMN to DMSMO is required prior to binding DMSO2 . This also applies to the fast binding of reduced FMN to DMSMO followed by DMSO2 . Substituting reduced DMSR with FMNH- demonstrated the same oxidation kinetics, indicating that FMNH- from DMSR was transferred to DMSMO. The oxidation of FMNH- :DMSMO, with and without DMSO2 did not generate any flavin adducts for monooxygenation. Therefore, H2 O2 is likely to be the reactive agent to attack the substrate. The H2 O2 assay results demonstrated production of H2 O2 from the oxidation of FMNH- :DMSMO, whereas H2 O2 was not detected in the presence of DMSO2 , confirming H2 O2 utilization. The rate constant for methanesulfinate formation determined from rapid quenched flow and the rate constant for flavin oxidation were similar, indicating that H2 O2 rapidly reacts with DMSO2 , with flavin oxidation as the rate-limiting step. This is the first report of the kinetic mechanisms of both components using rapid kinetics and of a method for methanesulfinate detection using LC-MS.


Asunto(s)
Dimetilsulfóxido , Oxigenasas de Función Mixta , Oxigenasas de Función Mixta/metabolismo , Peróxido de Hidrógeno , Flavoproteínas/metabolismo , Oxidorreductasas/metabolismo , Oxidación-Reducción , Flavinas/metabolismo , Cinética , Mononucleótido de Flavina/metabolismo
20.
Acta Crystallogr D Struct Biol ; 79(Pt 6): 479-497, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37259836

RESUMEN

Vibrio spp. play a crucial role in the global recycling of the highly abundant recalcitrant biopolymer chitin in marine ecosystems through their ability to secrete chitin-degrading enzymes to efficiently hydrolyse chitinous materials and use them as their major carbon source. In this study, the first crystal structures of a complete four-domain chitin-active AA10 lytic polysaccharide monooxygenase from the chitinolytic bacterium Vibrio campbellii type strain ATCC BAA-1116 are reported. The crystal structures of apo and copper-bound VhLPMO10A were resolved as homodimers with four distinct domains: an N-terminal AA10 catalytic (CatD) domain connected to a GlcNAc-binding (GbpA_2) domain, followed by a module X domain and a C-terminal carbohydrate-binding module (CBM73). Size-exclusion chromatography and small-angle X-ray scattering analysis confirmed that VhLPMO10A exists as a monomer in solution. The active site of VhLPMO10A is located on the surface of the CatD domain, with three conserved residues (His1, His98 and Phe170) forming the copper(II)-binding site. Metal-binding studies using synchrotron X-ray absorption spectroscopy and X-ray fluorescence, together with electron paramagnetic resonance spectroscopy, gave consistently strong copper(II) signals in the protein samples, confirming that VhLPMO10A is a copper-dependent enzyme. ITC binding data showed that VhLPMO10A could bind various divalent cations but bound most strongly to copper(II) ions, with a Kd of 0.1 ± 0.01 µM. In contrast, a Kd of 1.9 nM was estimated for copper(I) ions from redox-potential measurements. The presence of ascorbic acid is essential for H2O2 production in the reaction catalysed by VhLPMO10A. MALDI-TOF MS identified VhLPMO10A as a C1-specific LPMO, generating oxidized chitooligosaccharide products with different degrees of polymerization (DP2ox-DP8ox). This new member of the chitin-active AA10 LPMOs could serve as a powerful biocatalyst in biofuel production from chitin biomass.


Asunto(s)
Quitina , Vibrio , Quitina/metabolismo , Oxigenasas de Función Mixta/química , Cobre/metabolismo , Ecosistema , Peróxido de Hidrógeno , Proteínas Bacterianas/química , Polisacáridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA