Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Rheumatology (Oxford) ; 62(2): 894-904, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35532170

RESUMEN

OBJECTIVE: To identify FN1 transcripts associated with OA pathophysiology and investigate the downstream effects of modulating FN1 expression and relative transcript ratio. METHODS: FN1 transcriptomic data was obtained from our previously assessed RNA-seq dataset of lesioned and preserved OA cartilage samples from the Research osteoArthritis Articular Cartilage (RAAK) study. Differential transcript expression analysis was performed on all 27 FN1 transcripts annotated in the Ensembl database. Human primary chondrocytes were transduced with lentiviral particles containing short hairpin RNA (shRNA) targeting full-length FN1 transcripts or non-targeting shRNA. Subsequently, matrix deposition was induced in our 3D in vitro neo-cartilage model. Effects of changes in the FN1 transcript ratio on sulphated glycosaminoglycan (sGAG) deposition were investigated by Alcian blue staining and dimethylmethylene blue assay. Moreover, gene expression levels of 17 cartilage-relevant markers were determined by reverse transcription quantitative polymerase chain reaction. RESULTS: We identified 16 FN1 transcripts differentially expressed between lesioned and preserved cartilage. FN1-208, encoding migration-stimulating factor, was the most significantly differentially expressed protein coding transcript. Downregulation of full-length FN1 and a concomitant increased FN1-208 ratio resulted in decreased sGAG deposition as well as decreased ACAN and COL2A1 and increased ADAMTS-5, ITGB1 and ITGB5 gene expression levels. CONCLUSION: We show that full-length FN1 downregulation and concomitant relative FN1-208 upregulation was unbeneficial for deposition of cartilage matrix, likely due to decreased availability of the classical RGD (Arg-Gly-Asp) integrin-binding site of fibronectin.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Fibronectinas/genética , Fibronectinas/metabolismo , Osteoartritis/genética , Osteoartritis/metabolismo , Condrocitos/metabolismo , Cartílago Articular/metabolismo , ARN Interferente Pequeño
2.
Rheumatology (Oxford) ; 61(2): 856-864, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33989379

RESUMEN

OBJECTIVES: OA is a complex genetic disease with different risk factors contributing to its development. One of the genes, TNFRSF11B, previously identified with gain-of-function mutation in a family with early-onset OA with chondrocalcinosis, is among the highest upregulated genes in lesioned OA cartilage (RAAK-study). Here, we determined the role of TNFRSF11B overexpression in development of OA. METHODS: Human primary articular chondrocytes (9 donors RAAK study) were transduced using lentiviral particles with or without TNFRSF11B. Cells were cultured for 1 week in a 3 D in-vitro chondrogenic model. TNFRSF11B overexpression was confirmed by RT-qPCR, immunohistochemistry and ELISA. Effects of TNFRSF11B overexpression on cartilage matrix deposition, matrix mineralization, and genes highly correlated to TNFRSF11B in RNA-sequencing dataset (r >0.75) were determined by RT-qPCR. Additionally, glycosaminoglycans and collagen deposition were visualized with Alcian blue staining and immunohistochemistry (COL1 and COL2). RESULTS: Overexpression of TNFRSF11B resulted in strong upregulation of MMP13, COL2A1 and COL1A1. Likewise, mineralization and osteoblast characteristic markers RUNX2, ASPN and OGN showed a consistent increase. Among 30 genes highly correlated to TNFRSF11B, expression of only eight changed significantly, with BMP6 showing the highest increase (9-fold) while expression of RANK and RANKL remained unchanged indicating previously unknown downstream pathways of TNFRSF11B in cartilage. CONCLUSION: Results of our 3D in vitro chondrogenesis model indicate that upregulation of TNFRSF11B in lesioned OA cartilage may act as a direct driving factor for chondrocyte to osteoblast transition observed in OA pathophysiology. This transition does not appear to act via the OPG/RANK/RANKL triad common in bone remodeling.


Asunto(s)
Enfermedades de los Cartílagos/etiología , Osteoartritis/etiología , Osteoprotegerina/metabolismo , Anciano , Cartílago/metabolismo , Enfermedades de los Cartílagos/metabolismo , Células Cultivadas , Condrocitos/metabolismo , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Osteoartritis/metabolismo , Reacción en Cadena de la Polimerasa
3.
Rheumatology (Oxford) ; 62(1): 457-466, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-35383365

RESUMEN

OBJECTIVES: To investigate whether the deiodinase inhibitor iopanoic acid (IOP) has chondroprotective properties, a mechanical stress induced model of human aged explants was used to test both repeated dosing and slow release of IOP. METHODS: Human osteochondral explants subjected to injurious mechanical stress (65%MS) were treated with IOP or IOP encapsulated in poly lactic-co-glycolic acid-polyethylene glycol nanoparticles (NP-IOP). Changes to cartilage integrity and signalling were determined by Mankin scoring of histology, sulphated glycosaminoglycan (sGAG) release and expression levels of catabolic, anabolic and hypertrophic markers. Subsequently, on a subgroup of samples, RNA sequencing was performed on 65%MS (n = 14) and 65%MS+IOP (n = 7) treated cartilage to identify IOP's mode of action. RESULTS: Damage from injurious mechanical stress was confirmed by increased cartilage surface damage in the Mankin score, increased sGAG release, and consistent upregulation of catabolic markers and downregulation of anabolic markers. IOP and, though less effective, NP-IOP treatment, reduced MMP13 and increased COL2A1 expression. In line with this, IOP and NP-IOP reduced cartilage surface damage induced by 65%MS, while only IOP reduced sGAG release from explants subjected to 65%MS. Lastly, differential expression analysis identified 12 genes in IOP's mode of action to be mainly involved in reducing metabolic processes (INSIG1, DHCR7, FADS1 and ACAT2) and proliferation and differentiation (CTGF, BMP5 and FOXM1). CONCLUSION: Treatment with the deiodinase inhibitor IOP reduced detrimental changes of injurious mechanical stress. In addition, we identified that its mode of action was likely on metabolic processes, cell proliferation and differentiation.


Asunto(s)
Cartílago Articular , Glándula Tiroides , Humanos , Glándula Tiroides/metabolismo , Yoduro Peroxidasa/metabolismo , Yoduro Peroxidasa/farmacología , Transducción de Señal , Cartílago Articular/metabolismo , Condrocitos/metabolismo
4.
Rheumatology (Oxford) ; 61(7): 3023-3032, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34730803

RESUMEN

OBJECTIVE: To gain insight in the expression profile of long non-coding RNAs (lncRNAs) in OA subchondral bone. METHODS: RNA sequencing data of macroscopically preserved and lesioned OA subchondral bone of patients that underwent joint replacement surgery due to OA (N = 22 pairs; 5 hips, 17 knees, Research osteoArthrits Articular Tissue (RAAK study) was run through an in-house pipeline to detect expression of lncRNAs. Differential expression analysis between preserved and lesioned bone was performed. Spearman correlations were calculated between differentially expressed lncRNAs and differentially expressed mRNAs identified previously in the same samples. Primary osteogenic cells were transfected with locked nucleic acid (LNA) GapmeRs targeting AC005165.1 lncRNA, to functionally investigate its potential mRNA targets. RESULTS: In total, 2816 lncRNAs were well-expressed in subchondral bone and we identified 233 lncRNAs exclusively expressed in knee and 307 lncRNAs exclusively in hip. Differential expression analysis, using all samples (N = 22 pairs; 5 hips, 17 knees), resulted in 21 differentially expressed lncRNAs [false discovery rate (FDR) < 0.05, fold change (FC) range 1.19-7.39], including long intergenic non-protein coding RNA (LINC) 1411 (LINC01411, FC = 7.39, FDR = 2.20 × 10-8), AC005165.1 (FC = 0.44, FDR = 2.37 × 10-6) and empty spiracles homeobox 2 opposite strand RNA (EMX2OS, FC = 0.41, FDR = 7.64 × 10-3). Among the differentially expressed lncRNAs, five were also differentially expressed in articular cartilage, including AC005165.1, showing similar direction of effect. Downregulation of AC005165.1 in primary osteogenic cells resulted in consistent downregulation of highly correlated frizzled related protein (FRZB). CONCLUSION: The current study identified a novel lncRNA, AC005165.1, being dysregulated in OA articular cartilage and subchondral bone. Downregulation of AC005165.1 caused a decreased expression of OA risk gene FRZB, an important member of the wnt pathway, suggesting that AC005165.1 could be an attractive potential therapeutic target with effects in articular cartilage and subchondral bone.


Asunto(s)
Cartílago Articular , Péptidos y Proteínas de Señalización Intracelular , Osteoartritis de la Rodilla , Osteoartritis , ARN Largo no Codificante , Huesos/metabolismo , Cartílago Articular/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Articulación de la Rodilla/metabolismo , Osteoartritis/genética , Osteoartritis/metabolismo , Osteoartritis de la Rodilla/diagnóstico , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/cirugía , ARN Largo no Codificante/genética , ARN Mensajero/genética
5.
BMC Med ; 19(1): 266, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34727949

RESUMEN

BACKGROUND: Observational studies suggest interconnections between thyroid status, metabolism, and risk of coronary artery disease (CAD), but causality remains to be proven. The present study aimed to investigate the potential causal relationship between thyroid status and cardiovascular disease and to characterize the metabolomic profile associated with thyroid status. METHODS: Multi-cohort two-sample Mendelian randomization (MR) was performed utilizing genome-wide significant variants as instruments for standardized thyrotropin (TSH) and free thyroxine (fT4) within the reference range. Associations between TSH and fT4 and metabolic profile were investigated in a two-stage manner: associations between TSH and fT4 and the full panel of 161 metabolomic markers were first assessed hypothesis-free, then directional consistency was assessed through Mendelian randomization, another metabolic profile platform, and in individuals with biochemically defined thyroid dysfunction. RESULTS: Circulating TSH was associated with 52/161 metabolomic markers, and fT4 levels were associated with 21/161 metabolomic markers among 9432 euthyroid individuals (median age varied from 23.0 to 75.4 years, 54.5% women). Positive associations between circulating TSH levels and concentrations of very low-density lipoprotein subclasses and components, triglycerides, and triglyceride content of lipoproteins were directionally consistent across the multivariable regression, MR, metabolomic platforms, and for individuals with hypo- and hyperthyroidism. Associations with fT4 levels inversely reflected those observed with TSH. Among 91,810 CAD cases and 656,091 controls of European ancestry, per 1-SD increase of genetically determined TSH concentration risk of CAD increased slightly, but not significantly, with an OR of 1.03 (95% CI 0.99-1.07; p value 0.16), whereas higher genetically determined fT4 levels were not associated with CAD risk (OR 1.00 per SD increase of fT4; 95% CI 0.96-1.04; p value 0.59). CONCLUSIONS: Lower thyroid status leads to an unfavorable lipid profile and a somewhat increased cardiovascular disease risk.


Asunto(s)
Enfermedades Cardiovasculares , Tirotropina , Adulto , Anciano , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Femenino , Humanos , Lípidos , Masculino , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Tiroxina , Adulto Joven
6.
FASEB J ; 34(4): 5525-5537, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32141137

RESUMEN

Skeletal muscles control posture, mobility and strength, and influence whole-body metabolism. Muscles are built of different types of myofibers, each having specific metabolic, molecular, and contractile properties. Fiber classification is, therefore, regarded the key for understanding muscle biology, (patho-) physiology. The expression of three myosin heavy chain (MyHC) isoforms, MyHC-1, MyHC-2A, and MyHC-2X, marks myofibers in humans. Typically, myofiber classification is performed by an eye-based histological analysis. This classical approach is insufficient to capture complex fiber classes, expressing more than one MyHC-isoform. We, therefore, developed a methodological procedure for high-throughput characterization of myofibers on the basis of multiple isoforms. The mean fluorescence intensity of the three most abundant MyHC isoforms was measured per myofiber in muscle biopsies of 56 healthy elderly adults, and myofiber classes were identified using computational biology tools. Unsupervised clustering revealed the existence of six distinct myofiber clusters. A comparison with the visual assessment of myofibers using the same images showed that some of these myofiber clusters could not be detected or were frequently misclassified. The presence of these six clusters was reinforced by RNA expressions levels of sarcomeric genes. In addition, one of the clusters, expressing all three MyHC isoforms, correlated with histological measures of muscle health. To conclude, this methodological procedure enables deep characterization of the complex muscle heterogeneity. This study opens opportunities to further investigate myofiber composition in comparative studies.


Asunto(s)
Biología Computacional/métodos , Fibras Musculares Esqueléticas/clasificación , Fibras Musculares Esqueléticas/citología , Músculo Esquelético/citología , Cadenas Pesadas de Miosina/metabolismo , Femenino , Humanos , Masculino , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo
7.
Ann Rheum Dis ; 78(2): 270-277, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30504444

RESUMEN

OBJECTIVE: To uncover the microRNA (miRNA) interactome of the osteoarthritis (OA) pathophysiological process in the cartilage. METHODS: We performed RNA sequencing in 130 samples (n=35 and n=30 pairs for messenger RNA (mRNA) and miRNA, respectively) on macroscopically preserved and lesioned OA cartilage from the same patient and performed differential expression (DE) analysis of miRNA and mRNAs. To build an OA-specific miRNA interactome, a prioritisation scheme was applied based on inverse Pearson's correlations and inverse DE of miRNAs and mRNAs. Subsequently, these were filtered by those present in predicted (TargetScan/microT-CDS) and/or experimentally validated (miRTarBase/TarBase) public databases. Pathway enrichment analysis was applied to elucidate OA-related pathways likely mediated by miRNA regulatory mechanisms. RESULTS: We found 142 miRNAs and 2387 mRNAs to be differentially expressed between lesioned and preserved OA articular cartilage. After applying prioritisation towards likely miRNA-mRNA targets, a regulatory network of 62 miRNAs targeting 238 mRNAs was created. Subsequent pathway enrichment analysis of these mRNAs (or genes) elucidated that genes within the 'nervous system development' are likely mediated by miRNA regulatory mechanisms (familywise error=8.4×10-5). Herein NTF3 encodes neurotrophin-3, which controls survival and differentiation of neurons and which is closely related to the nerve growth factor. CONCLUSIONS: By an integrated approach of miRNA and mRNA sequencing data of OA cartilage, an OA miRNA interactome and related pathways were elucidated. Our functional data demonstrated interacting levels at which miRNA affects expression of genes in the cartilage and exemplified the complexity of functionally validating a network of genes that may be targeted by multiple miRNAs.


Asunto(s)
Cartílago Articular/química , Biología Computacional/métodos , MicroARNs/análisis , Osteoartritis/genética , ARN Mensajero/análisis , Humanos , Análisis de Secuencia de ARN
8.
PLoS Genet ; 11(10): e1005583, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26492326

RESUMEN

Remodelling the methylome is a hallmark of mammalian development and cell differentiation. However, current knowledge of DNA methylation dynamics in human tissue specification and organ development largely stems from the extrapolation of studies in vitro and animal models. Here, we report on the DNA methylation landscape using the 450k array of four human tissues (amnion, muscle, adrenal and pancreas) during the first and second trimester of gestation (9,18 and 22 weeks). We show that a tissue-specific signature, constituted by tissue-specific hypomethylated CpG sites, was already present at 9 weeks of gestation (W9). Furthermore, we report large-scale remodelling of DNA methylation from W9 to W22. Gain of DNA methylation preferentially occurred near genes involved in general developmental processes, whereas loss of DNA methylation mapped to genes with tissue-specific functions. Dynamic DNA methylation was associated with enhancers, but not promoters. Comparison of our data with external fetal adrenal, brain and liver revealed striking similarities in the trajectory of DNA methylation during fetal development. The analysis of gene expression data indicated that dynamic DNA methylation was associated with the progressive repression of developmental programs and the activation of genes involved in tissue-specific processes. The DNA methylation landscape of human fetal development provides insight into regulatory elements that guide tissue specification and lead to organ functionality.


Asunto(s)
Diferenciación Celular/genética , Metilación de ADN/genética , Epigénesis Genética , Desarrollo Fetal/genética , Glándulas Suprarrenales/crecimiento & desarrollo , Glándulas Suprarrenales/metabolismo , Amnios/crecimiento & desarrollo , Amnios/metabolismo , Islas de CpG/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Genoma Humano , Humanos , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Especificidad de Órganos/genética , Páncreas/crecimiento & desarrollo , Páncreas/metabolismo , Embarazo , Primer Trimestre del Embarazo/genética , Segundo Trimestre del Embarazo/genética , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos
10.
Eur Eat Disord Rev ; 22(6): 423-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25220664

RESUMEN

The stress response is regulated by the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). When the balance between GR and MR signalling is disturbed, one's capacity to cope with a stressful event is diminished. In this pilot study, we tested the hypothesis that an interaction between common variants in the MR (rs5522) or GR gene (rs41423247) and stressful life events influences perfectionism levels in a group of patients with an eating disorder (ED; n = 113). Patients carrying the minor G allele of rs5522 had a higher perfectionism score if more stressful life events were experienced [ß = 0.95, t(109) = 3.75, p < 0.01]. This effect was not found for patients carrying the AA genotype. These results suggest that rs5522 G allele carriers might be vulnerable to stressful life events. When patients with an ED are carriers and experience multiple life events, this might fuel their insecurity, which in turn may engender higher levels of perfectionism. Further studies are necessary to replicate and expand our findings.


Asunto(s)
Trastornos de Alimentación y de la Ingestión de Alimentos/genética , Polimorfismo Genético/genética , Receptores de Glucocorticoides/genética , Receptores de Mineralocorticoides/genética , Estrés Psicológico/genética , Estrés Psicológico/psicología , Adaptación Psicológica , Adulto , Trastornos de Alimentación y de la Ingestión de Alimentos/psicología , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Acontecimientos que Cambian la Vida , Masculino , Proyectos Piloto , Receptores de Glucocorticoides/fisiología , Receptores de Mineralocorticoides/fisiología
12.
Twin Res Hum Genet ; 16(1): 271-81, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23298648

RESUMEN

Over the past 25 years, the Adult Netherlands Twin Register (ANTR) has collected a wealth of information on physical and mental health, lifestyle, and personality in adolescents and adults. This article provides an overview of the sources of information available, the main research findings, and an outlook for the future. Between 1991 and 2012, longitudinal surveys were completed by twins, their parents, siblings, spouses, and offspring. Data are available for 33,957 participants, with most individuals having completed two or more surveys. Smaller projects provided in-depth phenotyping, including measurements of the autonomic nervous system, neurocognitive function, and brain imaging. For 46% of the ANTR participants, DNA samples are available and whole genome scans have been obtained in more than 11,000 individuals. These data have resulted in numerous studies on heritability, gene x environment interactions, and causality, as well as gene finding studies. In the future, these studies will continue with collection of additional phenotypes, such as metabolomic and telomere length data, and detailed genetic information provided by DNA and RNA sequencing. Record linkage to national registers will allow the study of morbidity and mortality, thus providing insight into the development of health, lifestyle, and behavior across the lifespan.


Asunto(s)
Bancos de Muestras Biológicas , Investigación Biomédica , Enfermedades en Gemelos/genética , Interacción Gen-Ambiente , Sistema de Registros , Gemelos/genética , Adolescente , Adulto , Enfermedades en Gemelos/epidemiología , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Estudios Longitudinales , Masculino , Países Bajos/epidemiología , Adulto Joven
13.
Proc Natl Acad Sci U S A ; 107(42): 18046-9, 2010 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-20921414

RESUMEN

A set of currently known alleles increasing the risk for coronary artery disease, cancer, and type 2 diabetes as identified by genome-wide association studies was tested for compatibility with human longevity. Here, we show that nonagenarian siblings from long-lived families and singletons older than 85 y of age from the general population carry the same number of disease risk alleles as young controls. Longevity in this study population is not compromised by the cumulative effect of this set of risk alleles for common disease.


Asunto(s)
Alelos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Longevidad/genética , Anciano , Anciano de 80 o más Años , Enfermedad de la Arteria Coronaria/genética , Diabetes Mellitus Tipo 2/genética , Humanos , Polimorfismo de Nucleótido Simple
14.
Behav Genet ; 41(1): 155-64, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21049304

RESUMEN

Attention problems form one of the core characteristics of Attention-Deficit Hyperactive Disorder (ADHD), a multifactorial neurodevelopmental disorder. From twin research it is clear that genes play a considerable role in the etiology and in the stability of ADHD in childhood. Association studies have focused on genes involved in the dopaminergic and serotoninergic systems, but with inconclusive results. This study investigated the effect of 26 Single Nucleotide Polymorphisms (SNPs) in genes encoding for serotonin receptors 2A (HTR2A), Catechol-O-Methyltransferase (COMT), Tryptophane Hydroxylase type 2 (TPH2), and Brain Derived Neurotrophic Factor (BDNF). Attention problems (AP) were assessed by parental report at ages 3, 7, 10, and 12 years in more than 16,000 twin pairs. There were 1148 genotyped children with AP data. We developed a longitudinal framework to test the genetic association effect. Based on all phenotypic data, a longitudinal model was formulated with one latent factor loading on all AP measures over time. The broad heritability for the AP latent factor was 82%, and the latent factor explained around 55% of the total phenotypic variance. The association of SNPs with AP was then modeled at the level of this factor. None of the SNPs showed a significant association with AP. The lowest p-value was found for the rs6265 SNP in the BDNF gene (p = 0.035). Overall, our results suggest no evidence for a role of these genes in childhood AP.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/genética , Enfermedades en Gemelos/genética , Estudios de Asociación Genética , Alelos , Niño , Preescolar , Femenino , Genotipo , Humanos , Estudios Longitudinales , Masculino , Modelos Genéticos , Países Bajos , Polimorfismo de Nucleótido Simple/genética
15.
Sci Adv ; 7(45): eabg8583, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34739320

RESUMEN

Osteoarthritis is the most prevalent joint disease worldwide, yet progress in development of effective disease-modifying treatments is slow because of lack of insight into the underlying disease pathways. Therefore, we aimed to identify the causal pathogenic mutation in an early-onset osteoarthritis family, followed by functional studies in human induced pluripotent stem cells (hiPSCs) in an in vitro organoid cartilage model. We demonstrated that the identified causal missense mutation in the gelatin-binding domain of the extracellular matrix protein fibronectin resulted in significant decreased binding capacity to collagen type II. Further analyses of formed hiPSC-derived neo-cartilage tissue highlighted that mutated fibronectin affected chondrogenic capacity and propensity to a procatabolic osteoarthritic state. Together, we demonstrate that binding of fibronectin to collagen type II is crucial for fibronectin downstream gene expression of chondrocytes. We advocate that effective treatment development should focus on restoring or maintaining proper binding between fibronectin and collagen type II.

16.
Twin Res Hum Genet ; 13(3): 231-45, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20477721

RESUMEN

In 2004 the Netherlands Twin Register (NTR) started a large scale biological sample collection in twin families to create a resource for genetic studies on health, lifestyle and personality. Between January 2004 and July 2008, adult participants from NTR research projects were invited into the study. During a home visit between 7:00 and 10:00 am, fasting blood and morning urine samples were collected. Fertile women were bled on day 2-4 of the menstrual cycle, or in their pill-free week. Biological samples were collected for DNA isolation, gene expression studies, creation of cell lines and for biomarker assessment. At the time of blood sampling, additional phenotypic information concerning health, medication use, body composition and smoking was collected. Of the participants contacted, 69% participated. Blood and urine samples were collected in 9,530 participants (63% female, average age 44.4 (SD 15.5) years) from 3,477 families. Lipid profile, glucose, insulin, HbA1c, haematology, CRP, fibrinogen, liver enzymes and creatinine have been assessed. Longitudinal survey data on health, personality and lifestyle are currently available for 90% of all participants. Genome-wide SNP data are available for 3,524 participants, with additional genotyping ongoing. The NTR biobank, combined with the extensive phenotypic information available within the NTR, provides a valuable resource for the study of genetic determinants of individual differences in mental and physical health. It offers opportunities for DNA-based and gene expression studies as well as for future metabolomic and proteomic projects.


Asunto(s)
Bancos de Muestras Biológicas , Epidemiología Molecular/métodos , Estudios en Gemelos como Asunto/estadística & datos numéricos , Adulto , Antropometría , Biomarcadores/sangre , Biomarcadores/orina , Humanos , Estudios Longitudinales , Epidemiología Molecular/estadística & datos numéricos , Países Bajos/epidemiología , Fenotipo , Sistema de Registros , Gemelos Dicigóticos/sangre , Gemelos Dicigóticos/orina , Gemelos Monocigóticos/sangre , Gemelos Monocigóticos/orina
17.
Geriatr Orthop Surg Rehabil ; 11: 2151459320960091, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194255

RESUMEN

INTRODUCTION: High mortality rates of approximately 20% within 1 year after treatment are observed for patients with proximal femoral fractures. This preliminary study explores the prognostic value of a previously constructed mortality risk score based on a set of 14 metabolites for the survival and functional recovery in patients with proximal femoral fractures. MATERIALS AND METHODS: A prospective observational cohort study was conducted including patients admitted with a proximal femoral fracture. The primary outcome was patient survival, and the recovery of independence in activities of daily living was included as a secondary outcome. The mortality risk score was constructed for each patient and its prognostic value was tested for the whole population. RESULTS: Data was available form 136 patients. The mean age of all patients was 82.1 years, with a median follow-up of 6 months. Within this period, 19.0% of all patients died and 51.1% recovered to their prefracture level of independence. The mortality score was significantly associated with mortality (HR, 2.74; 95% CI, 1.61-4.66; P < 0.001), but showed only a fair prediction accuracy (AUC = 0.68) and a borderline significant comparison of the mortality score tertile groups in survival analyses (P = 0.049). No decisive associations were found in any of the analyses for the functional recovery of patients. DISCUSSION: These findings support the previously determined prognostic value of the mortality risk score. However, the independent prognostic value when adjusted for potential confounding factors is yet to be assessed. Also, a risk score constructed for this specific patient population might achieve higher accuracies for the prediction of survival and functional recovery. CONCLUSIONS: A modest prediction accuracy was observed for the mortality risk score in this population. More elaborate studies are needed to validate these findings and develop a tailored model for clinical purposes in this patient population.

18.
Epigenomics ; 12(7): 563-573, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32516006

RESUMEN

Aim: UVA radiation drives skin photoaging in the dermis, plausibly via persistent changes to DNA methylation in dermal fibroblasts. Methods: Genome-wide DNA methylation changes after five repeated daily UVA doses were determined at 48 h (transitionary) and 1 week (recovery) post final irradiation. Results: Differential methylation was found at the transitionary time point in active chromatin states near genes that are highly expressed in fibroblasts and are involved in cellular defensive mechanisms; the majority of these methylation differences were restored to control levels after 7 day recovery. At the recovery time point, new differential methylation occurred at repressed regions near developmental genes, normally weakly expressed in fibroblasts. Conclusion: UVA irradiation induces transitionary and recovery-associated DNA methylation responses in fibroblasts with contrasting functional characteristics.


Asunto(s)
Metilación de ADN , Fibroblastos/efectos de la radiación , Envejecimiento de la Piel/efectos de la radiación , Rayos Ultravioleta , Anciano de 80 o más Años , Células Cultivadas , Islas de CpG , Humanos , Adulto Joven
19.
Arthritis Rheumatol ; 72(11): 1845-1854, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32840049

RESUMEN

OBJECTIVE: To identify robustly differentially expressed long noncoding RNAs (lncRNAs) with osteoarthritis (OA) pathophysiology in cartilage and to explore potential target messenger RNA (mRNA) by establishing coexpression networks, followed by functional validation. METHODS: RNA sequencing was performed on macroscopically lesioned and preserved OA cartilage from patients who underwent joint replacement surgery due to OA (n = 98). Differential expression analysis was performed on lncRNAs that were annotated in GENCODE and Ensembl databases. To identify potential interactions, correlations were calculated between the identified differentially expressed lncRNAs and the previously reported differentially expressed protein-coding genes in the same samples. Modulation of chondrocyte lncRNA expression was achieved using locked nucleic acid GapmeRs. RESULTS: By applying our in-house pipeline, we identified 5,053 lncRNAs that were robustly expressed, of which 191 were significantly differentially expressed (according to false discovery rate) between lesioned and preserved OA cartilage. Upon integrating mRNA sequencing data, we showed that intergenic and antisense differentially expressed lncRNAs demonstrate high, positive correlations with their respective flanking sense genes. To functionally validate this observation, we selected P3H2-AS1, which was down-regulated in primary chondrocytes, resulting in the down-regulation of P3H2 gene expression levels. As such, we can confirm that P3H2-AS1 regulates its sense gene P3H2. CONCLUSION: By applying an improved detection strategy, robustly differentially expressed lncRNAs in OA cartilage were detected. Integration of these lncRNAs with differential mRNA expression levels in the same samples provided insight into their regulatory networks. Our data indicates that intergenic and antisense lncRNAs play an important role in regulating the pathophysiology of OA.


Asunto(s)
Cartílago Articular/metabolismo , Epigénesis Genética , Osteoartritis de la Cadera/metabolismo , Osteoartritis de la Rodilla/metabolismo , ARN Largo no Codificante/metabolismo , Anciano , Anciano de 80 o más Años , Cartílago Articular/patología , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Osteoartritis de la Cadera/genética , Osteoartritis de la Cadera/patología , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/patología , ARN Largo no Codificante/genética
20.
Circ Genom Precis Med ; 13(5): 541-547, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33079603

RESUMEN

BACKGROUND: The blood metabolome incorporates cues from the environment and the host's genetic background, potentially offering a holistic view of an individual's health status. METHODS: We have compiled a vast resource of proton nuclear magnetic resonance metabolomics and phenotypic data encompassing over 25 000 samples derived from 26 community and hospital-based cohorts. RESULTS: Using this resource, we constructed a metabolomics-based age predictor (metaboAge) to calculate an individual's biological age. Exploration in independent cohorts demonstrates that being judged older by one's metabolome, as compared with one's chronological age, confers an increased risk on future cardiovascular disease, mortality, and functionality in older individuals. A web-based tool for calculating metaboAge (metaboage.researchlumc.nl) allows easy incorporation in other epidemiological studies. Access to data can be requested at bbmri.nl/samples-images-data. CONCLUSIONS: In summary, we present a vast resource of metabolomics data and illustrate its merit by constructing a metabolomics-based score for biological age that captures aspects of current and future cardiometabolic health.


Asunto(s)
Envejecimiento/genética , Biomarcadores/metabolismo , Metabolómica/métodos , Interfaz Usuario-Computador , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/mortalidad , Enfermedades Cardiovasculares/patología , Humanos , Países Bajos , Modelos de Riesgos Proporcionales , Espectroscopía de Protones por Resonancia Magnética , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA