Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 22(9)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062940

RESUMEN

Mutations in the GBA1 gene coding for glucocerebrosidase (GCase) are the main genetic risk factor for Parkinson's disease (PD). Indeed, identifying reduced GCase activity as a common feature underlying the typical neuropathological signatures of PD-even when considering idiopathic forms of PD-has recently paved the way for designing novel strategies focused on enhancing GCase activity to reduce alpha-synuclein burden and preventing dopaminergic cell death. Here we have performed bilateral injections of a viral vector coding for the mutated form of alpha-synuclein (rAAV9-SynA53T) for disease modeling purposes, both in mice as well as in nonhuman primates (NHPs), further inducing a progressive neuronal death in the substantia nigra pars compacta (SNpc). Next, another vector coding for the GBA1 gene (rAAV9-GBA1) was unilaterally delivered in the SNpc of mice and NHPs one month after the initial insult, together with the contralateral delivery of an empty/null rAAV9 for control purposes. Obtained results showed that GCase enhancement reduced alpha-synuclein burden, leading to improved survival of dopaminergic neurons. Data reported here support using GCase gene therapy as a disease-modifying treatment for PD and related synucleinopathies, including idiopathic forms of these disorders.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Terapia Genética , Glucosilceramidasa/genética , Enfermedad de Parkinson/terapia , alfa-Sinucleína/genética , Animales , Dopamina/genética , Neuronas Dopaminérgicas/patología , Vectores Genéticos/uso terapéutico , Humanos , Macaca/genética , Mesencéfalo/metabolismo , Mesencéfalo/patología , Ratones , Mutación/genética , Neuroprotección/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Sustancia Negra/metabolismo , Sustancia Negra/patología
2.
Int J Mol Sci ; 22(21)2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34769380

RESUMEN

Despite the well-accepted role of the two main neuropathological markers (ß-amyloid and tau) in the progression of Alzheimer's disease, the interaction and specific contribution of each of them is not fully elucidated. To address this question, in the present study, an adeno-associated virus (AAV9) carrying the mutant P301L form of human tau, was injected into the dorsal hippocampi of APP/PS1 transgenic mice or wild type mice (WT). Three months after injections, memory tasks, biochemical and immunohistochemical analysis were performed. We found that the overexpression of hTauP301L accelerates memory deficits in APP/PS1 mice, but it did not affect memory function of WT mice. Likewise, biochemical assays showed that only in the case of APP/PS1-hTauP301L injected mice, an important accumulation of tau was observed in the insoluble urea fraction. Similarly, electron microscopy images revealed that numerous clusters of tau immunoparticles appear at the dendrites of APP/PS1 injected mice and not in WT animals, suggesting that the presence of amyloid is necessary to induce tau aggregation. Interestingly, these tau immunoparticles accumulate in dendritic mitochondria in the APP/PS1 mice, whereas most of mitochondria in WT injected mice remain free of tau immunoparticles. Taken together, it seems that amyloid induces tau aggregation and accumulation in the dendritic mitochondria and subsequently may alter synapse function, thus, contributing to accelerate cognitive decline in APP/PS1 mice.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Péptidos beta-Amiloides/efectos adversos , Trastornos del Conocimiento/patología , Modelos Animales de Enfermedad , Mitocondrias/patología , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/fisiología , Animales , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Fosforilación , Presenilina-1/fisiología , Sinapsis , Proteínas tau/genética
3.
Prog Neurobiol ; 191: 101818, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32380223

RESUMEN

Clinical studies revealed that some aged-individuals accumulate a significant number of histopathological Alzheimer´s disease (AD) lesions in their brain, yet without developing any signs of dementia. Animal models of AD represent suitable tools to identify genes that might promote cognitive resilience and hence, this study first set out to identify cognitively resilient individuals in the aged-Tg2576 mouse model. A transcriptomic analysis of these mice identified PLA2G4E as a gene that might confer resistance to dementia. Indeed, a significant decrease in PLA2G4E is evident in the brain of late-stage AD patients, whereas no such changes are observed in early stage patients with AD neuropathological lesions but no signs of dementia. We demonstrated that adeno-associated viral vector-mediated overexpression of PLA2G4E in hippocampal neurons completely restored cognitive deficits in elderly APP/PS1 mice, without affecting the amyloid or tau pathology. These PLA2G4E overexpressing APP/PS1 mice developed significantly more dendritic spines than sham-injected mice, coinciding with the cognitive improvement observed. Hence, these results support the idea that a loss of PLA2G4E might play a key role in the onset of dementia in AD, highlighting the potential of PLA2G4E overexpression as a novel therapeutic strategy to manage AD and other disorders that course with memory deficits.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Espinas Dendríticas , Terapia Genética , Fosfolipasas A2 Grupo IV/fisiología , Fosfolipasas A2 Grupo IV/uso terapéutico , Hipocampo , Memoria Espacial , Animales , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
4.
Brain Struct Funct ; 223(1): 343-355, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28835999

RESUMEN

Glucocerebrosidase (GCase) is a lysosomal enzyme encoded by the GBA1 gene. Mutations in GBA1 gene lead to Gaucher's disease, the most prevalent lysosomal storage disorder. GBA1 mutations reduce GCase activity, therefore promoting the aggregation of alpha-synuclein, a common neuropathological finding underlying Parkinson's disease (PD) and dementia with Lewy bodies. However, it is also worth noting that a direct link between GBA1 mutations and alpha-synuclein aggregation indicating cause and effect is still lacking, with limited experimental evidence to date. Bearing in mind that a number of strategies increasing GCase expression for the treatment of PD are currently under development, here we sought to analyze the baseline expression of GCase in the brain of Macaca fascicularis, which has often been considered as the gold-standard animal model of PD. Although as with other lysosomal enzymes, GCase is expected to be ubiquitously expressed, here a number of regional variations have been consistently found, together with several specific neurochemical phenotypes expressing very high levels of GCase. In this regard, the most enriched expression of GCase was constantly found in cholinergic neurons from the nucleus basalis of Meynert, dopaminergic cells in the substantia nigra pars compacta, serotoninergic neurons from the raphe nuclei, as well as in noradrenergic neurons located in the locus ceruleus. Moreover, it is also worth noting that moderate levels of expression were also found in a number of areas within the paleocortex and archicortex, such as the entorhinal cortex and the hippocampal formation, respectively.


Asunto(s)
Encéfalo/enzimología , Glucosilceramidasa/metabolismo , Animales , Encéfalo/anatomía & histología , Colina O-Acetiltransferasa/metabolismo , Neuronas Colinérgicas/enzimología , Macaca fascicularis/anatomía & histología , Masculino , Vías Nerviosas/metabolismo
5.
Neurotherapeutics ; 15(4): 1063-1081, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29987762

RESUMEN

The loss of dopaminergic neurons and α-synuclein accumulation are major hallmarks of Parkinson's disease (PD), and it has been suggested that a major mechanism of α-synuclein toxicity is microglial activation. The lack of animal models that properly reproduce PD, and particularly the underlying synucleinopathy, has hampered the clarification of PD mechanisms and the development of effective therapies. Here, we used neurospecific adeno-associated viral vectors serotype 9 coding for either the wild-type or mutated forms of human alpha-synuclein (WT and SynA53T, respectively) under the control of a synapsin promoter to further induce a marked dopaminergic neuron loss together with an important microglial neuroinflammatory response. Overexpression of neuronal alpha-synuclein led to increased expression of angiotensin type 1 receptors and NADPH oxidase activity, together with a marked increase in the number of OX-6-positive microglial cells and expression of markers of phagocytic activity (CD68) and classical pro-inflammatory/M1 microglial phenotype markers such as inducible nitric oxide synthase, tumor necrosis factor alpha, interleukin-1ß, and IL-6. Moreover, a significant decrease in the expression of markers of immunoregulatory/M2 microglial phenotype such as the enzyme arginase-1 was constantly observed. Interestingly, alpha-synuclein-induced changes in microglial phenotype markers and dopaminergic neuron death were inhibited by simultaneous treatment with the angiotensin type 1 blockers candesartan or telmisartan. Our results suggest the repurposing of candesartan and telmisartan as a neuroprotective strategy for PD.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Muerte Celular/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Encefalitis/inducido químicamente , Encefalitis/tratamiento farmacológico , alfa-Sinucleína/toxicidad , Animales , Bencimidazoles/uso terapéutico , Compuestos de Bifenilo , Proteínas de Unión al Calcio/metabolismo , Citocinas/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Masculino , Proteínas de Microfilamentos/metabolismo , Microscopía Confocal , Mutación/genética , Ratas , Ratas Sprague-Dawley , Sinapsinas/genética , Sinapsinas/metabolismo , Telmisartán/uso terapéutico , Tetrazoles/uso terapéutico , Transducción Genética , Tirosina 3-Monooxigenasa/metabolismo
6.
Front Neuroanat ; 11: 2, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28239341

RESUMEN

Adeno-associated viruses (AAVs) have become highly promising tools for research and clinical applications in the central nervous system (CNS). However, specific delivery of genes to the cell type of interest is essential for the success of gene therapy and therefore a correct selection of the promoter plays a very important role. Here, AAV8 vectors carrying enhanced green fluorescent protein (eGFP) as reporter gene under the transcriptional control of different CNS-specific promoters were used and compared with a strong ubiquitous promoter. Since one of the main limitations of AAV-mediated gene delivery lies in its restricted cloning capacity, we focused our work on small-sized promoters. We tested the transduction efficacy and specificity of each vector after stereotactic injection into the mouse striatum. Three glia-specific AAV vectors were generated using two truncated forms of the human promoter for glial fibrillar acidic protein (GFAP) as well as a truncated form of the murine GFAP promoter. All three vectors resulted in predominantly glial expression; however we also observed eGFP expression in other cell-types such as oligodendrocytes, but never in neurons. In addition, robust and neuron-specific eGFP expression was observed using the minimal promoters for the neural protein BM88 and the neuronal nicotinic receptor ß2 (CHRNB2). In summary, we developed a set of AAV vectors designed for specific expression in cells of the CNS using minimal promoters to drive gene expression when the size of the therapeutic gene matters.

7.
Brain Struct Funct ; 222(4): 1767-1784, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27612857

RESUMEN

Although it has long been widely accepted that dopamine receptor types D1 and D2 form GPCR heteromers in the striatum, the presence of D1-D2 receptor heteromers has been recently challenged. In an attempt to properly characterize D1-D2 receptor heteromers, here we have used the in situ proximity ligation assay (PLA) in striatal sections comprising the caudate nucleus, the putamen and the core and shell territories of the nucleus accumbens. Experiments were carried out in control macaques as well as in MPTP-treated animals (with and without dyskinesia). Obtained data support the presence of D1-D2 receptor heteromers within all the striatal subdivisions, with the highest abundance in the accumbens shell. Dopamine depletion by MPTP resulted in an increase of D1-D2 density in caudate and putamen which was normalized by levodopa treatment. Two different sizes of heteromers were consistently found, thus suggesting that besides individual heteromers, D1-D2 receptor heteromers are sometimes organized in macromolecular complexes made of a number of D1-D2 heteromers. Furthermore, the PLA technique was combined with different neuronal markers to properly characterize the identities of striatal neurons expressing D1-D2 heteromers. We have found that striatal projection neurons giving rise to either the direct or the indirect basal ganglia pathways expressed D1-D2 heteromers. Interestingly, macromolecular complexes of D1-D2 heteromers were only found within cholinergic interneurons. In summary, here we provide overwhelming proof that D1 and D2 receptors form heteromeric complexes in the macaque striatum, thus representing a very appealing target for a number of brain diseases involving dopamine dysfunction.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Núcleo Caudado/metabolismo , Macaca fascicularis , Masculino , Núcleo Accumbens/metabolismo , Trastornos Parkinsonianos , Putamen/metabolismo
8.
Front Neuroanat ; 8: 146, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25520629

RESUMEN

Calbindin (CB) is a calcium binding protein reported to protect dopaminergic neurons from degeneration. Although a direct link between CB content and differential vulnerability of dopaminergic neurons has long been accepted, factors other than CB have also been suggested, particularly those related to the dopamine transporter. Indeed, several studies have reported that CB levels are not causally related to the differential vulnerability of dopaminergic neurons against neurotoxins. Here we have used dual stains for tyrosine hydroxylase (TH) and CB in 3 control and 3 MPTP-treated monkeys to visualize dopaminergic neurons in the ventral tegmental area (VTA) and in the dorsal and ventral tiers of the substantia nigra pars compacta (SNcd and SNcv) co-expressing TH and CB. In control animals, the highest percentages of co-localization were found in VTA (58.2%), followed by neurons located in the SNcd (34.7%). As expected, SNcv neurons lacked CB expression. In MPTP-treated animals, the percentage of CB-ir/TH-ir neurons in the VTA was similar to control monkeys (62.1%), whereas most of the few surviving neurons in the SNcd were CB-ir/TH-ir (88.6%). Next, we have elucidated the presence of CB within identified nigrostriatal and nigroextrastriatal midbrain dopaminergic projection neurons. For this purpose, two control monkeys received one injection of Fluoro-Gold into the caudate nucleus and one injection of cholera toxin (CTB) into the postcommissural putamen, whereas two more monkeys were injected with CTB into the internal division of the globus pallidus (GPi). As expected, all the nigrocaudate- and nigroputamen-projecting neurons were TH-ir, although surprisingly, all of these nigrostriatal-projecting neurons were negative for CB. Furthermore, all the nigropallidal-projecting neurons co-expressed both TH and CB. In summary, although CB-ir dopaminergic neurons seem to be less prone to MPTP-induced degeneration, our data clearly demonstrated that these neurons are not giving rise to nigrostriatal projections and indeed CB-ir/TH-ir neurons only originate nigroextrastriatal projections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA