Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 113(4): 677-697, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36534087

RESUMEN

Salt stress is one of the major causes of reduced crop production, limiting agricultural development globally. Plants have evolved with complex systems to maintain the balance between growth and stress responses, where signaling pathways such as hormone signaling play key roles. Recent studies revealed that hormones are modulated by microRNAs (miRNAs). Previously, two sweet sorghum (Sorghum bicolor) inbred lines with different salt tolerance were identified: the salt-tolerant M-81E and the salt-sensitive Roma. The levels of endogenous hormones in M-81E and Roma varied differently under salt stress, showing a different balance between growth and stress responses. miRNA and degradome sequencing showed that the expression of many upstream transcription factors regulating signal transduction and hormone-responsive genes was directly induced by differentially expressed miRNAs, whose levels were very different between the two sweet sorghum lines. Furthermore, the effects of representative miRNAs on salt tolerance in sorghum were verified through a transformation system mediated by Agrobacterium rhizogenes. Also, miR-6225-5p reduced the level of Ca2+ in the miR-6225-5p-overexpressing line by inhibiting the expression of the Ca2+ uptake gene SbGLR3.1 in the root epidermis and affected salt tolerance in sorghum. This study provides evidence for miRNA-mediated growth and stress responses in sweet sorghum.


Asunto(s)
MicroARNs , Sorghum , MicroARNs/genética , MicroARNs/metabolismo , Sorghum/metabolismo , Estrés Fisiológico/genética , Estrés Salino/genética , Grano Comestible/genética , Hormonas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
2.
Mol Ecol ; : e17457, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984778

RESUMEN

Suaeda salsa L. is a typical halophyte with high value as a vegetable. Here, we report a 447.98 Mb, chromosomal-level genome of S. salsa, assembled into nine pseudomolecules (contig N50 = 1.36 Mb) and annotated with 27,927 annotated protein-coding genes. Most of the assembled S. salsa genome, 58.03%, consists of transposable elements. Some gene families including HKT1, NHX, SOS and CASP related to salt resistance were significantly amplified. We also observed expansion of genes encoding protein that bind the trace elements Zn, Fe, Cu and Mn, and genes related to flavonoid and α-linolenic acid metabolism. Many expanded genes were significantly up-regulated under salinity, which might have contributed to the acquisition of salt tolerance in S. salsa. Transcriptomic data showed that high salinity markedly up-regulated salt-resistance related genes, compared to low salinity. Abundant metabolic pathways of secondary metabolites including flavonoid, unsaturated fatty acids and selenocompound were enriched, which indicates that the species is a nutrient-rich vegetable. Particularly worth mentioning is that there was no significant difference in the numbers of cis-elements in the promoters of salt-related and randomly selected genes in S. salsa when compared with Arabidopsis thaliana, which may affirm that plant salt tolerance is a quantitative rather than a qualitative trait in terms of promoter evolution. Our findings provide deep insight into the adaptation of halophytes to salinity from a genetic evolution perspective.

3.
J Integr Plant Biol ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967265

RESUMEN

Soil salinity is a worldwide problem threatening crop yields. Some plant growth-promoting rhizobacteria (PGPR) could survive in high salt environment and assist plant adaptation to stress. Nevertheless, the genomic and metabolic features, as well as the regulatory mechanisms promoting salt tolerance in plants by these bacteria remain largely unknown. In the current work, a novel halotolerant PGPR strain, namely, Bacillus sp. strain RA can enhance tomato tolerance to salt stress. Comparative genomic analysis of strain RA with its closely related species indicated a high level of evolutionary plasticity exhibited by strain-specific genes and evolutionary constraints driven by purifying selection, which facilitated its genomic adaptation to salt-affected soils. The transcriptome further showed that strain RA could tolerate salt stress by balancing energy metabolism via the reprogramming of biosynthetic pathways. Plants exude a plethora of metabolites that can strongly influence plant fitness. The accumulation of myo-inositol in leaves under salt stress was observed, leading to the promotion of plant growth triggered by Bacillus sp. strain RA. Importantly, myo-inositol serves as a selective force in the assembly of the phyllosphere microbiome and the recruitment of plant-beneficial species. It promotes destabilizing properties in phyllosphere bacterial co-occurrence networks, but not in fungal networks. Furthermore, interdomain interactions between bacteria and fungi were strengthened by myo-inositol in response to salt stress. This work highlights the genetic adaptation of RA to salt-affected soils and its ability to impact phyllosphere microorganisms through the adjustment of myo-inositol metabolites, thereby imparting enduring resistance against salt stress in tomato.

4.
Plant Mol Biol ; 113(4-5): 249-264, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37964053

RESUMEN

Salt stress adversely affects plant growth and development. It is necessary to understand the underlying salt response mechanism to improve salt tolerance in plants. MYB transcription factors can regulate plant responses to salt stress. However, only a few studies have explored the role of MYB TFs in Sorghum bicolor (L.) Moench. So we decided to make a systematic analysis and research on the sorghum MYB family. A total of 210 MYB genes in sorghum were identified in this study. Furthermore, 210 MYB genes were distributed across ten chromosomes, named SbMYB1-SbMYB210. To study the phylogeny of the identified TFs, 210 MYB genes were divided into six subfamilies. We further demonstrated that SbMYB genes have evolved under strong purifying selection. SbMYBAS1 (SbMYB119) was chosen as the study object, which the expression decreased under salt stress conditions. Further study of the SbMYBAS1 showed that SbMYBAS1 is located in the nucleus. Under salt stress conditions, Arabidopsis plants overexpressed SbMYBAS1 showed significantly lower dry/fresh weight and chlorophyll content but significantly higher membrane permeability, MDA content, and Na+/K+ ratio than the wild-type Arabidopsis plants. Yeast two-hybrid screening result showed that SbMYBAS1 might interact with proteins encoded by SORBI_302G184600, SORBI_3009G247900 and SORBI_3004G59600. Results also showed that SbMYBAS1 could regulate the expression of AtGSTU17, AtGSTU16, AtP5CS2, AtUGT88A1, AtUGT85A2, AtOPR2 and AtPCR2 under salt stress conditions. This work laid a foundation for the study of the response mechanism of sorghum MYB gene family to salt stress.


Asunto(s)
Arabidopsis , Sorghum , Sorghum/genética , Sorghum/metabolismo , Arabidopsis/genética , Genes myb , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino/genética , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Filogenia
5.
Plant Cell ; 32(1): 206-225, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31732703

RESUMEN

Cys2His2-like fold group (C2H2)-type zinc finger proteins promote root hair growth and development by regulating their target genes. However, little is known about their potential negative roles in root hair initiation and elongation. Here, we show that the C2H2-type zinc finger protein named ZINC FINGER PROTEIN1 (AtZP1), which contains an ERF-associated amphiphilic repression (EAR) motif, negatively regulates Arabidopsis (Arabidopsis thaliana) root hair initiation and elongation. Our results demonstrate that AtZP1 is highly expressed in root hairs and that AtZP1 inhibits transcriptional activity during root hair development. Plants overexpressing AtZP1 lacked root hairs, while loss-of-function mutants had longer and more numerous root hairs than the wild type. Transcriptome analysis indicated that AtZP1 downregulates genes encoding basic helix-loop-helix (bHLH) transcription factors associated with root hair cell differentiation and elongation. Mutation or deletion of the EAR motif substantially reduced the inhibitory activity of AtZP1. Chromatin immunoprecipitation assays, AtZP1:glucocorticoid receptor (GR) induction experiments, electrophoretic mobility shift assays, and yeast one-hybrid assays showed that AtZP1 directly targets the promoters of bHLH transcription factor genes, including the key root hair initiation gene ROOT HAIR DEFECTIVE6 (RHD6) and root hair elongation genes ROOT HAIR DEFECTIVE 6-LIKE 2 (RSL2) and RSL4, and suppresses root hair development. Our findings suggest that AtZP1 functions downstream of GL2 and negatively regulates root hair initiation and elongation, by suppressing RHD6, RSL4, and RSL2 transcription via the GL2/ZP1/RSL pathway.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Homeodominio/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Dedos de Zinc/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Mutación , Organogénesis de las Plantas , Fenotipo , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Dedos de Zinc/genética
6.
Theor Appl Genet ; 136(1): 5, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36656365

RESUMEN

KEY MESSAGE: SbMYBHv33 negatively regulated biomass accumulation and salt tolerance in sorghum and Arabidopsis by regulating reactive oxygen species accumulation and ion levels. Salt stress is one of the main types of environmental stress leading to a reduction in crop yield worldwide. Plants have also evolved a variety of corresponding regulatory pathways to resist environmental stress damage. This study aimed to identify a SbMYBHv33 transcription factor that downregulates in salt, drought, and abscisic acid (ABA) in the salt-tolerant inbred line sorghum M-81E. The findings revealed that overexpression of SbMYBHv33 in sorghum significantly reduced sorghum biomass accumulation at the seedling stage and also salinity tolerance. Meanwhile, a heterologous transformation of Arabidopsis with SbMYBHv33 produced a similar phenotype. The loss of function of the Arabidopsis homolog of SbMYBHv33 resulted in longer roots and increased salt tolerance. Under normal conditions, SbMYBHV33 overexpression promoted the expression of ABA pathway genes in sorghum and inhibited growth. Under salt stress conditions, the gene expression of SbMYBHV33 decreased in the overexpressed lines, and the promotion of these genes in the ABA pathway was attenuated. This might be an important reason for the difference in growth and stress resistance between SbMYBHv33-overexpressed sorghum and ectopic expression Arabidopsis. Hence, SbMYBHv33 is an important component of sorghum growth and development and the regulation of salt stress response, and it could negatively regulate salt tolerance and biomass accumulation in sorghum.


Asunto(s)
Arabidopsis , Sorghum , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tolerancia a la Sal/genética , Arabidopsis/genética , Sorghum/genética , Biomasa , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
7.
Theor Appl Genet ; 135(8): 2609-2625, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35841419

RESUMEN

KEY MESSAGE: SbWRKY55 functions as a key component of the ABA-mediated signaling pathway; transgenic sorghum regulates plant responses to saline environments and will help save arable land and ensure food security. Salt tolerance in plants is triggered by various environmental stress factors and endogenous hormonal signals. Numerous studies have shown that WRKY transcription factors are involved in regulating plant salt tolerance. However, the underlying mechanism for WRKY transcription factors regulated salt stress response and signal transduction pathways remains largely unknown. In this study, the SbWRKY55 transcription factor was found to be the key component for reduced levels of salt and abscisic acid in SbWRKY55 overexpression significantly reduced salt tolerance in sorghum and Arabidopsis. Mutation of the homologous gene AtWRKY55 in A. thaliana significantly enhanced salt tolerance, and SbWRKY55 supplementation in the mutants restored salt tolerance. In the transgenic sorghum with SbWRKY55 overexpression, the expression levels of genes involved in the abscisic acid (ABA) pathway were altered, and the endogenous ABA content decreased. Yeast one-hybrid assays and dual-luciferase reporter assay showed that SbWRKY55 binds directly to the promoter of SbBGLU22 and inhibits its expression level. In addition, both in vivo and in vitro biochemical analyses showed that SbWRKY55 interacts with the FYVE zinc finger protein SbFYVE1, blocking the ABA signaling pathway. This could be an important feedback regulatory pathway to balance the SbWRKY55-mediated salt stress response. In summary, the results of this study provide convincing evidence that SbWRKY55 functions as a key component in the ABA-mediated signaling pathway, highlighting the dual role of SbWRKY55 in ABA signaling. This study also showed that SbWRKY55 could negatively regulate salt tolerance in sorghum.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Sorghum , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Sorghum/genética , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Theor Appl Genet ; 135(1): 201-216, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34633473

RESUMEN

bHLH family proteins play an important role in plant stress response. However, the molecular mechanism regulating the salt response of bHLH is largely unknown. This study aimed to investigate the function and regulating mechanism of the sweet sorghum SbbHLH85 during salt stress. The results showed that SbbHLH85 was different from its homologs in other species. Also, it was a new atypical bHLH transcription factor and a key gene for root development in sweet sorghum. The overexpression of SbbHLH85 resulted in significantly increased number and length of root hairs via ABA and auxin signaling pathways, increasing the absorption of Na+. Thus, SbbHLH85 plays a negative regulatory role in the salt tolerance of sorghum. We identified a potential interaction partner of SbbHLH85, which was phosphate transporter chaperone PHF1 and modulated the distribution of phosphate, through screening a yeast two-hybrid library. Both yeast two-hybrid and BiFC experiments confirmed the interaction between SbbHLH85 and PHF1. The overexpression of SbbHLH85 led to a decrease in the expression of PHF1 as well as the content of Pi. Based on these results, we suggested that the increase in the Na+ content and the decrease in the Pi content resulted in the salt sensitivity of transgenic sorghum.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Proteínas de Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Tolerancia a la Sal/fisiología , Sorghum/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Clonación Molecular , Perfilación de la Expresión Génica , Secuencias Hélice-Asa-Hélice , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Estrés Salino , Tolerancia a la Sal/genética , Transducción de Señal , Sodio/metabolismo , Sorghum/genética , Sorghum/crecimiento & desarrollo
9.
RNA Biol ; 19(1): 897-907, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35811474

RESUMEN

RNA splicing refers to a process by which introns of a pre-mRNA are excised and the exons at both ends are joined together. Chloroplast introns are inherently self-splicing ribozymes, but over time, they have lost self-splicing ability due to the degeneration of intronic elements. Thus, the splicing of chloroplast introns relies heavily on nuclear-encoded splicing factors, which belong to diverse protein families. Different splicing factors and their shared intron targets are supposed to form ribonucleoprotein particles (RNPs) to facilitate intron splicing. As characterized in a previous review, around 14 chloroplast intron splicing factors were identified until 2010. However, only a few genetic and biochemical evidence has shown that these splicing factors are required for the splicing of one or several introns. The roles of splicing factors are generally believed to facilitate intron folding; however, the precise role of each protein in RNA splicing remains ambiguous. This may be because the precise binding site of most of these splicing factors remains unexplored. In the last decade, several new splicing factors have been identified. Also, several splicing factors were found to bind to specific sequences within introns, which enhanced the understanding of splicing factors. Here, we summarize recent progress on the splicing factors in land plant chloroplasts and discuss their possible roles in chloroplast RNA splicing based on previous studies.


Asunto(s)
Embryophyta , Empalme del ARN , Cloroplastos/genética , Cloroplastos/metabolismo , Embryophyta/genética , Embryophyta/metabolismo , Intrones , Factores de Empalme de ARN/genética , ARN de Planta/metabolismo
10.
Int J Mol Sci ; 23(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35628281

RESUMEN

Sweet sorghum has strong stress resistance and is considered a promising energy crop. In the present study, the effects of salt on the membrane lipid metabolism of two sweet sorghum inbred lines (salt-tolerant M-81E and salt-sensitive Roma) were analyzed. After treatment with 150 mM NaCl, higher levels of fresh weight and chlorophyll fluorescence, as well as lower levels of malondialdehyde (MDA) were found in salt-tolerant M-81E. Concomitantly, 702 and 1339 differentially expression genes (DEGs) in M-81E and Roma were identified in response to salt stress. We determined that most DEGs were related to glycerophospholipid metabolism, glycerolipid metabolism, and other membrane lipid metabolisms. Under NaCl treatment, the expression of the membrane-associated phospholipase A1 was down-regulated at the transcriptional level, along with an increased content of phosphatidylcholine (PC) in both cultivars. The inhibition of triacylglycerol (TAG) mobilization in M-81E delayed salt-induced leaf senescence. Furthermore, enhanced levels of glycerol-3-phosphate acyltransferase (GPAT) expression contributed to improved salt resistance in M-81E. The results of this study demonstrate membrane the role of lipid regulation in mediating salt-defensive responses in sweet sorghum and expand our understanding of the relationship between changes in membrane lipid content and salt resistance.


Asunto(s)
Sorghum , Grano Comestible/genética , Perfilación de la Expresión Génica , Lípidos de la Membrana/metabolismo , Estrés Salino , Tolerancia a la Sal/genética , Cloruro de Sodio/metabolismo , Cloruro de Sodio/farmacología , Sorghum/genética , Sorghum/metabolismo
11.
Plant Cell Rep ; 40(2): 271-282, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33025178

RESUMEN

KEY MESSAGE: Cytokinins are a class of phytohormone that participate in the regulation of the plant growth, development, and stress response. In this review, the potential regulating mechanism during plant growth and stress response are discussed. Cytokinins are a class of phytohormone that participate in the regulation of plant growth, physiological activities, and yield. Cytokinins also play a key role in response to abiotic stresses, such as drought, salt and high or low temperature. Through the signal transduction pathway, cytokinins interact with various transcription factors via a series of phosphorylation cascades to regulate cytokinin-target gene expression. In this review, we systematically summarize the biosynthesis and metabolism of cytokinins, cytokinin signaling, and associated gene regulation, and highlight the function of cytokinins during plant development and resistance to abiotic stress. We also focus on the importance of crosstalk between cytokinins and other classes of phytohormones, including auxin, ethylene, strigolactone, and gibberellin. Our aim is to provide a comprehensive overview of recent findings on the mechanisms by which cytokinins act as central regulators of plant development and stress reactions, and highlight topics for future research.


Asunto(s)
Citocininas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/genética , Transducción de Señal , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Desarrollo de la Planta , Fenómenos Fisiológicos de las Plantas , Estrés Fisiológico
12.
Plant Mol Biol ; 102(6): 603-614, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32052233

RESUMEN

The WRKY transcription factor family is involved in responding to biotic and abiotic stresses. Its members contain a typical WRKY domain and can regulate plant physiological responses by binding to W-boxes in the promoter regions of downstream target genes. We identified the sweet sorghum SbWRKY50 (Sb09g005700) gene, which encodes a typical class II of the WRKY family protein that localizes to the nucleus and has transcriptional activation activity. The expression of SbWRKY50 in sweet sorghum was reduced by salt stress, and its ectopic expression reduced the salt tolerance of Arabidopsis thaliana plants. Compared with the wild type, the germination rate, root length, biomass and potassium ion content of SbWRKY50 over-expression plants decreased significantly under salt-stress conditions, while the hydrogen peroxide, superoxide anion and sodium ion contents increased. Real-time PCR results showed that the expression levels of AtSOS1, AtHKT1 and genes related to osmotic and oxidative stresses in over-expression strains decreased under salt-stress conditions. Luciferase complementation imaging and yeast one-hybrid assays confirmed that SbWRKY50 could directly bind to the upstream promoter of the SOS1 gene in A. thaliana. However, in sweet sorghum, SbWRKY50 could directly bind to the upstream promoters of SOS1 and HKT1. These results suggest that the new WRKY transcription factor SbWRKY50 participates in plant salt response by controlling ion homeostasis. However, the regulatory mechanisms are different in sweet sorghum and Arabidopsis, which may explain their different salt tolerance levels. The data provide information that can be applied to genetically modifying salt tolerance in different crop varieties.


Asunto(s)
Homeostasis , Tolerancia a la Sal/fisiología , Sorghum/genética , Sorghum/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biomasa , Proteínas Portadoras , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Potasio/metabolismo , Regiones Promotoras Genéticas , Especies Reactivas de Oxígeno/metabolismo , Semillas , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Estrés Fisiológico , Superóxidos/metabolismo , Simportadores/genética , Simportadores/metabolismo
13.
Plant Cell Physiol ; 61(1): 169-177, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31596474

RESUMEN

Heat stress poses a major threat to plant productivity and crop yields. The induction of heat shock proteins (HSPs) by heat shock factors is a principal defense response of plants exposed to heat stress. In this study, we identified and analyzed the heat stress-induced Whirly1 (SlWHY1) gene in tomato (Solanum lycopersicum). We generated various SlWHY1-overexpressing (OE) and SlWHY1-RNA interference (RNAi) lines to investigate the role of WHIRLY1 in thermotolerance. Compared with the wild type (WT), the OE lines showed less wilting, as reflected by their increased membrane stability and soluble sugar content and reduced reactive oxygen species (ROS) accumulation under heat stress. By contrast, RNAi lines with inhibited SlWHY1 expression showed the opposite phenotype and corresponding physiological indices under heat stress. The heat-induced gene SlHSP21.5A, encoding an endoplasmic reticulum-localized HSP, was upregulated in the OE lines and downregulated in the RNAi lines compared with the WT. RNAi-mediated inhibition of SlHSP21.5A expression also resulted in reduced membrane stability and soluble sugar content and increased ROS accumulation under heat stress compared with the WT. SlWHY1 binds to the elicitor response element-like element in the promoter of SlHSP21.5A to activate its transcription. These findings suggest that SlWHY1 promotes thermotolerance in tomato by regulating SlHSP21.5A expression.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Choque Térmico/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Termotolerancia/genética , Arabidopsis/genética , Proteínas de Arabidopsis , Clorofila , Proteínas de Unión al ADN/metabolismo , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , Calor , Solanum lycopersicum/fisiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Especies Reactivas de Oxígeno/metabolismo , Termotolerancia/fisiología , Nicotiana/genética
14.
Plant Biotechnol J ; 18(2): 513-525, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31350929

RESUMEN

Tillering is a significant agronomic trait in wheat which shapes plant architecture and yield. Strigolactones (SLs) function in inhibiting axillary bud outgrowth. The roles of SLs in the regulation of bud outgrowth have been described in model plant species, including rice and Arabidopsis. However, the role of SLs genes in wheat remains elusive due to the size and complexity of the wheat genomes. In this study, TaD27 genes in wheat, orthologs of rice D27 encoding an enzyme involved in SLs biosynthesis, were identified. TaD27-RNAi wheat plants had more tillers, and TaD27-B-OE wheat plants had fewer tillers. Germination bioassay of Orobanche confirmed the SLs was deficient in TaD27-RNAi and excessive in TaD27-B-OE wheat plants. Moreover, application of exogenous GR24 or TIS108 could mediate the axillary bud outgrowth of TaD27-RNAi and TaD27-B-OE in the hydroponic culture, suggesting that TaD27-B plays critical roles in regulating wheat tiller number by participating in SLs biosynthesis. Unlike rice D27, plant height was not affected in the transgenic wheat plants. Transcription and gene coexpression network analysis showed that a number of genes are involved in the SLs signalling pathway and axillary bud development. Our results indicate that TaD27-B is a key factor in the regulation of tiller number in wheat.


Asunto(s)
Proteínas de Plantas , Triticum , Regulación de la Expresión Génica de las Plantas , Fenotipo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Transducción de Señal/genética , Triticum/anatomía & histología , Triticum/genética
15.
Mol Biol Rep ; 46(1): 1447-1457, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30465132

RESUMEN

microRNAs (miRNAs) in plants are a class of small RNAs consisting of approximately 21-24 nucleotides. The mature miRNA binds to the target mRNA through the formation of a miRNA-induced silencing complex (MIRISC), and cleaves or inhibits translation, thereby achieving negative regulation of the target gene. Based on miRNA plays an important role in regulating plant gene expression, studies on the prediction, identification, function and evolution of plant miRNAs have been carried out. In addition, many researches prove that miRNAs are also involved in many kinds of abiotic and biotic stress, under abiotic stress, plants can express some miRNA, and act on stress-related target genes, which can make plants adapt to stress in physiological response. In this review, the synthetic pathway and mechanism of plant miRNA are briefly described, and we discuss the biological functions and regulatory mechanisms of miRNAs responding to abiotic stresses including low temperature, salt, drought stress and breeding to lay the foundation for further exploring the mechanism of action of miRNAs in stress resistance of plant. And analyze its utilization prospects in plant stress resistance research.


Asunto(s)
MicroARNs/genética , Fitomejoramiento , Plantas/genética , Estrés Fisiológico/genética , Redes Reguladoras de Genes , MicroARNs/metabolismo
16.
Mol Biol Rep ; 46(4): 3937-3944, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31037550

RESUMEN

Maize (Zea mays L.) is an important model plant with an important role in agriculture and national economies all over the world. The optimum growth temperature of maize is between 25 and 28 °C. At temperatures below 12 °C, maize is vulnerable to damage by chilling stress. MYB transcription factors play important roles in plants' response to low temperature stress. Maize ZmMYB31 encodes a R2R3-MYB transcription factor, ZmMYB31, which localized in the nucleus. ZmMYB31 expression was induced by chilling stress and the highest expression level was detected with the 24 h chilling treatment. ZmMYB31 expression also increased in overexpressing Arabidopsis lines. The minimal fluorescence (Fo) with all photosystem II reaction centers open increased in wild type (WT) and transgenic plants under chilling stress, with the highest increase in WT. The maximal photochemical efficiency of photosystem II (Fv/Fm) decreased more in WT than in transgenic plants during chilling stress. Furthermore, the ZmMYB31-overexpressing lines showed higher superoxide dismutase and ascorbate peroxidase activity and lower reactive oxygen species (ROS) content than the WT. The expression of genes related to chilling stress was higher in transgenic plants than in WT. These results suggest that ZmMYB31 plays a positive regulatory role in chilling and peroxide stress by regulating the expression of chilling stress-related genes to reduce ion extravasation, ROS content, and low-temperature photoinhibition, thereby improving low temperature resistance.


Asunto(s)
Frío/efectos adversos , Respuesta al Choque por Frío/genética , Zea mays/genética , Adaptación Fisiológica/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas , Oxidación-Reducción , Estrés Oxidativo/fisiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Zea mays/metabolismo
17.
Proteomics ; 18(20): e1800046, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30194912

RESUMEN

The histidine kinase Hik33 plays a central role in acclimation to changing environments in cyanobacteria. Deletion of hik33 induces a strong stress-like response in Synechocystis sp. PCC 6803 (Synechocystis) as represented by repressed photoautotrophic growth and photosynthesis, and differential expression of stress-responsive proteins. In contrast, the photomixotrophic growth of the hik33-deletion mutant (Δhik33) with glucose as the exogenous carbon source is only marginally repressed. To investigate how glucose rescues the growth of Δhik33, the proteomes of the photomixotrophically growing wild-type (WT) and the mutant strains of Synechocystis are quantitatively analyzed. It is found that glucose induces upregulation of the oxidative pentose phosphate (OPP) pathway. Depletion of glucose-6-phosphate dehydrogenase (G6PDH), which catalyzes the first and the rate-limiting step of the OPP pathway, significantly inhibits the photomixotrophic growth of Δhik33 but not of the WT. The result suggests that the OPP pathway, which is usually nonfunctional in the photomixotrophically growing WT, plays a major role in the photomixotrophic growth of Δhik33.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Glucosa/farmacología , Mutación , Vía de Pentosa Fosfato , Eliminación de Secuencia , Synechocystis/crecimiento & desarrollo , Proteínas Bacterianas/genética , Estrés Oxidativo , Fotosíntesis , Synechocystis/efectos de los fármacos , Synechocystis/genética , Synechocystis/metabolismo
18.
Biochem Biophys Res Commun ; 503(2): 397-401, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30057319

RESUMEN

Basic helix-loop-helix protein (bHLH) is the most extensive class of transcription factors in eukaryotes, which can regulate gene expression through interaction with specific motif in target genes. bHLH transcription factor is not only universally involved in plant growth and metabolism, including photomorphogenesis, light signal transduction and secondary metabolism, but also plays an important role in plant response to stress. In this review, we discuss the role of bHLH in plants in response to stresses such as drought, salt and cold stress. To provide a strong evidence for the important role of bHLH in plant stress response, in order to provide new ideas and targets for the prevention and treatment of plant stress resistance.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica de las Plantas , Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/genética , Plantas/genética , Estrés Fisiológico , Activación Transcripcional , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo
19.
Biochem Biophys Res Commun ; 503(2): 402-407, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30055799

RESUMEN

Long non-coding RNA (lncRNA) is a non-coding RNA greater than 200 nucleotides in length. LncRNAs can regulate gene expression at transcription and post-transcription, epigenetic level, and plays an important role in a wide range of biological processes such as genomic imprinting, chromatin remodeling, transcriptional activation, transcriptional interference and cell cycle. It becomes the current hot topics in the study of molecular biology and genetics. Emerging evidence proposed that lncRNAs play important roles in response to both abiotic and biotic stress. In this review, we discuss the role of lncRNAs in drought resistance, salt resistance, disease resistance, and immunity of plants, providing strong evidence for exploring the important role of lncRNAs in plant resistance, in order to explore new ideas and new targets for prevention and control.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Plantas/genética , ARN Largo no Codificante/genética , ARN de Planta/genética , Sequías , Inmunidad Innata , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Fenómenos Fisiológicos de las Plantas , Plantas/inmunología , ARN Largo no Codificante/inmunología , ARN de Planta/inmunología , Estrés Salino , Estrés Fisiológico
20.
BMC Genomics ; 18(1): 727, 2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28903734

RESUMEN

BACKGROUND: Suaeda salsa (S. salsa) is a euhalophyte with high economic value. S. salsa can produce dimorphic seeds. Brown seeds are more salt tolerant, can germinate quickly and maintain the fitness of the species under high saline conditions. Black seeds are less salt tolerant, may become part of the seed bank and germinate when soil salinity is reduced. Previous reports have mainly focused on the ecophysiological traits of seed germination and production under saline conditions in this species. However, there is no information available on the molecular characteristics of S. salsa dimorphic seeds. RESULTS: In the present study, a total of 5825 differentially expressed genes were obtained; and 4648 differentially expressed genes were annotated based on a sequence similarity search, utilizing five public databases by transcriptome analysis. The different expression of these genes may be associated with embryo development, fatty acid, osmotic regulation substances and plant hormones in brown and black seeds. Compared to black seeds, most genes may relate to embryo development, and various genes that encode fatty acid desaturase and are involved in osmotic regulation substance synthesis or transport are upregulated in brown seeds. A large number of differentially expressed genes related to plant hormones were found in brown and black seeds, and their possible roles in regulating seed dormancy/germination were discussed. CONCLUSIONS: Upregulated genes involved in seed development and osmotic regulation substance accumulation may relate to bigger seed size and rapid seed germination in brown seeds, compared to black seeds. Differentially expressed genes of hormones may relate to seed dormancy/germination and the development of brown and black seeds. The transcriptome dataset will serve as a valuable resource to further understand gene expression and functional genomics in S. salsa dimorphic seeds.


Asunto(s)
Chenopodiaceae/genética , Perfilación de la Expresión Génica , Genes de Plantas/genética , Semillas/genética , Chenopodiaceae/crecimiento & desarrollo , Anotación de Secuencia Molecular , Latencia en las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA