Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 709: 149828, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38537596

RESUMEN

Long intergenic non-coding RNA 346 (LINC00346) has been reported to be involved in the development of atherosclerosis and specific cancers by affecting signaling pathways. However, its function in inflammation has not been thoroughly studied. Therefore, its expression pattern and function were determined in the human macrophage-like cell line THP-1. Lipopolysaccharide (LPS) treatment induced the expression of LINC00346. LPS-induced NF-κB activation and proinflammatory cytokine expression were suppressed or enhanced by the overexpression or knockdown of LINC00346, respectively. Analyses using dual luciferase assay and decoy RNAs that could block RNA-RNA interactions indicated that LINC00346 improves phosphatase and tensin homolog (PTEN) expression by sponging miR-25-3p. Subsequently, PTEN suppresses phosphoinositide-3 kinase (PI3K)-mediated conversion of phosphatidylinositol-4,5-bisphosphate (PIP2) into phosphatidylinositol-3,4,5-trisphosphate (PIP3) as well as consequent activation of protein kinase B (AKT) and NF-κB. Interestingly, database analysis revealed that the expression levels of LINC00346 and PTEN were simultaneously decreased in breast cancer tissues. Further analyses conducted using a breast cancer cell line, MDA-MB-231, confirmed the functional relationship among LINC00346, miR-25-3p, and PTEN in LPS-induced activation of NF-κB. These results indicate that miR-25-3p-sponging activity of LINC00346 affects the balance between PTEN and PI3K as well as the downstream activation of AKT/NF-κB pathway in inflammatory conditions.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Femenino , Humanos , Lipopolisacáridos/farmacología , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositoles , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo
2.
Mol Cell Proteomics ; 21(11): 100424, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36220603

RESUMEN

Astrocytes are major supportive glia and immune modulators in the brain; they are highly secretory in nature and interact with other cell types via their secreted proteomes. To understand how astrocytes communicate during neuroinflammation, we profiled the secretome of human astrocytes following stimulation with proinflammatory factors. A total of 149 proteins were significantly upregulated in stimulated astrocytes, and a bioinformatics analysis of the astrocyte secretome revealed that the brain renin-angiotensin system (RAS) is an important mechanism of astrocyte communication. We observed that the levels of soluble form of aminopeptidase N (sANPEP), an RAS component that converts angiotensin (Ang) III to Ang IV in a neuroinflammatory milieu, significantly increased in the astrocyte secretome. To elucidate the role of sANPEP and Ang IV in neuroinflammation, we first evaluated the expression of Ang IV receptors in human glial cells because Ang IV mediates biological effects through its receptors. The expression of angiotensin type 1 receptor was considerably upregulated in activated human microglial cells but not in human astrocytes. Moreover, interleukin-1ß release from human microglial cells was synergistically increased by cotreatment with sANPEP and its substrate, Ang III, suggesting the proinflammatory action of Ang IV generated by sANPEP. In a mouse neuroinflammation model, brain microglial activation and proinflammatory cytokine expression levels were increased by intracerebroventricular injection of sANPEP and attenuated by an enzymatic inhibitor and neutralizing antibody against sANPEP. Collectively, our results indicate that astrocytic sANPEP-induced increase in Ang IV exacerbates neuroinflammation by interacting with microglial proinflammatory receptor angiotensin type 1 receptor, highlighting an important role of indirect crosstalk between astrocytes and microglia through the brain RAS in neuroinflammation.


Asunto(s)
Astrocitos , Microglía , Animales , Ratones , Humanos , Microglía/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Sistema Renina-Angiotensina , Antígenos CD13/metabolismo , Enfermedades Neuroinflamatorias , Encéfalo/metabolismo , Modelos Animales de Enfermedad
3.
Alzheimers Dement ; 20(4): 2731-2741, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38411315

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) involves the complement cascade, with complement component 3 (C3) playing a key role. However, the relationship between C3 and amyloid beta (Aß) in blood is limited. METHODS: Plasma C3 and Aß oligomerization tendency (AßOt) were measured in 35 AD patients and 62 healthy controls. Correlations with cerebrospinal fluid (CSF) biomarkers, cognitive impairment, and amyloid positron emission tomography (PET) were analyzed. Differences between biomarkers were compared in groups classified by concordances of biomarkers. RESULTS: Plasma C3 and AßOt were elevated in AD patients and in CSF or amyloid PET-positive groups. Weak positive correlation was found between C3 and AßOt, while both had strong negative correlations with CSF Aß42 and cognitive performance. Abnormalities were observed for AßOt and CSF Aß42 followed by C3 changes. DISCUSSION: Increased plasma C3 in AD are associated with amyloid pathology, possibly reflecting a defense response for Aß clearance. Further studies on Aß-binding proteins will enhance understanding of Aß mechanisms in blood.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/líquido cefalorraquídeo , Amiloide , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Complemento C3 , Fragmentos de Péptidos/líquido cefalorraquídeo , Tomografía de Emisión de Positrones/métodos , Proteínas tau/líquido cefalorraquídeo
4.
Int J Mol Sci ; 25(5)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38473915

RESUMEN

Over the past century, molecular biology's focus has transitioned from proteins to DNA, and now to RNA. Once considered merely a genetic information carrier, RNA is now recognized as both a vital element in early cellular life and a regulator in complex organisms. Long noncoding RNAs (lncRNAs), which are over 200 bases long but do not code for proteins, play roles in gene expression regulation and signal transduction by inducing epigenetic changes or interacting with various proteins and RNAs. These interactions exhibit a range of functions in various cell types, including macrophages. Notably, some macrophage lncRNAs influence the activation of NF-κB, a crucial transcription factor governing immune and inflammatory responses. Macrophage NF-κB is instrumental in the progression of various pathological conditions including sepsis, atherosclerosis, cancer, autoimmune disorders, and hypersensitivity. It orchestrates gene expression related to immune responses, inflammation, cell survival, and proliferation. Consequently, its malfunction is a key contributor to the onset and development of these diseases. This review aims to summarize the function of lncRNAs in regulating NF-κB activity in macrophage activation and inflammation, with a particular emphasis on their relevance to human diseases and their potential as therapeutic targets. The insights gained from studies on macrophage lncRNAs, as discussed in this review, could provide valuable knowledge for the development of treatments for various pathological conditions involving macrophages.


Asunto(s)
FN-kappa B , ARN Largo no Codificante , Humanos , FN-kappa B/metabolismo , ARN Largo no Codificante/genética , Macrófagos/metabolismo , Transducción de Señal/genética , Inflamación/metabolismo
5.
Expert Rev Proteomics ; 20(10): 197-209, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37724426

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, memory loss, and changes in behavior. Accumulating evidence indicates that dysfunction of glial cells, including astrocytes, microglia, and oligodendrocytes, may contribute to the development and progression of AD. Large-scale analysis of glial proteins sheds light on their roles in cellular processes and diseases. In AD, glial proteomics has been utilized to understand glia-based pathophysiology and identify potential biomarkers and therapeutic targets. AREA COVERED: In this review, we provide an updated overview of proteomic analysis of glia in the context of AD. Additionally, we discuss current challenges in the field, involving glial complexity and heterogeneity, and describe some cutting-edge proteomic technologies to address them. EXPERT OPINION: Unbiased comprehensive analysis of glial proteomes aids our understanding of the molecular and cellular mechanisms of AD pathogenesis. These investigations highlight the crucial role of glial cells and provide novel insights into the mechanisms of AD pathology. A deeper understanding of the AD-related glial proteome could offer a repertoire of potential biomarkers and therapeutics. Further technical advancement of glial proteomics will enable us to identify proteins within individual cells and specific cell types, thus significantly enhancing our comprehension of AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteómica , Neuroglía/metabolismo , Biomarcadores
6.
Expert Rev Proteomics ; 20(12): 371-379, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37978891

RESUMEN

INTRODUCTION: Astrocytes are the most abundant cell type in the central nervous system (CNS). They play a pivotal role in supporting neuronal function and maintaining homeostasis by releasing a variety of bioactive proteins, collectively known as the astrocyte secretome. Investigating secretome provides insights into the molecular mechanisms underlying astrocyte function and dysfunction, as well as novel strategies to prevent and treat diseases affecting the CNS. AREAS COVERED: Proteomics databases are a valuable resource for studying the role of astrocytes in healthy and diseased brain function, as they provide information about gene expression, protein expression, and cellular function. In this review, we discuss existing databases that are useful for astrocyte secretome research. EXPERT OPINION: Astrocyte secretomics is a field that is rapidly progressing, yet the availability of dedicated databases is currently limited. To meet the increasing demand for comprehensive omics data in glia research, developing databases specifically focused on astrocyte secretome is crucial. Such databases would allow researchers to investigate the intricate molecular landscape of astrocytes and comprehend their involvement in diverse physiological and pathological processes. Expanding resources through the development of databases dedicated to the astrocyte secretome may facilitate further advancements in this field.


Asunto(s)
Astrocitos , Secretoma , Humanos , Astrocitos/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Proteínas/metabolismo
7.
Glia ; 70(10): 1864-1885, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35638268

RESUMEN

Although ATP and/or adenosine derived from astrocytes are known to regulate sleep, the precise mechanisms underlying the somnogenic effects of ATP and adenosine remain unclear. We selectively expressed channelrhodopsin-2 (ChR2), a light-sensitive ion channel, in astrocytes within the ventrolateral preoptic nucleus (VLPO), which is an essential brain nucleus involved in sleep promotion. We then examined the effects of photostimulation of astrocytic ChR2 on neuronal excitability using whole-cell patch-clamp recordings in two functionally distinct types of VLPO neurons: sleep-promoting GABAergic projection neurons and non-sleep-promoting local GABAergic neurons. Optogenetic stimulation of VLPO astrocytes demonstrated opposite outcomes in the two types of VLPO neurons. It led to the inhibition of non-sleep-promoting neurons and excitation of sleep-promoting neurons. These responses were attenuated by blocking of either adenosine A1 receptors or tissue-nonspecific alkaline phosphatase (TNAP). In contrast, exogenous adenosine decreased the excitability of both VLPO neuron populations. Moreover, TNAP was expressed in galanin-negative VLPO neurons, but not in galanin-positive sleep-promoting projection neurons. Taken together, these results suggest that astrocyte-derived ATP is converted into adenosine by TNAP in non-sleep-promoting neurons. In turn, adenosine decreases the excitability of local GABAergic neurons, thereby increasing the excitability of sleep-promoting GABAergic projection neurons. We propose a novel mechanism involving astrocyte-neuron interactions in sleep regulation, wherein endogenous adenosine derived from astrocytes excites sleep-promoting VLPO neurons, and thus decreases neuronal excitability in arousal-related areas of the brain.


Asunto(s)
Galanina , Área Preóptica , Adenosina/farmacología , Adenosina Trifosfato/farmacología , Astrocitos , Neuronas GABAérgicas , Galanina/farmacología , Área Preóptica/fisiología
8.
Glia ; 70(10): 1902-1926, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35670184

RESUMEN

Cathelicidin-related antimicrobial peptide (CRAMP) is an effector molecule of the innate immune system with direct antimicrobial and immunomodulatory activities; however, its role in neuroinflammatory responses and related diseases is not clearly understood. In particular, the expression of CRAMP and its functional role has not been previously studied in experimental autoimmune encephalomyelitis (EAE) or multiple sclerosis (MS). Here, we investigated the role of CRAMP in neuroinflammation, using an EAE mouse model of MS and postmortem patient tissues. We found that the CRAMP expression was increased in the spinal cords of EAE-induced mice. Immunofluorescence analysis revealed that CRAMP is mainly induced in reactive astrocytes in the inflamed spinal cord of EAE mice. A similar pattern of the LL-37 (human CRAMP) expression was observed in the brain and spinal cord tissues of patients with MS. An intrathecal injection of the CRAMP peptide in EAE mice accelerated the onset of symptoms and increased disease severity with augmented expression of inflammatory mediators, glial activation, infiltration of inflammatory cells, and demyelination. In addition, shRNA-mediated knockdown of Cramp in the spinal cord resulted in a milder disease course with less inflammation in EAE mice. We identified FPR2 on microglia as a CRAMP receptor and demonstrated that CRAMP potentiates IFN-γ-induced microglial activation via the STAT3 pathway. Taken together, our findings suggest that CRAMP is a novel mediator of astrocyte-microglia interactions in neuroinflammatory conditions such as EAE. Thus, CRAMP could be exploited as a biomarker or therapeutic target for the diagnosis or treatment of MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Péptidos Catiónicos Antimicrobianos , Péptidos Antimicrobianos , Astrocitos/metabolismo , Comunicación , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Humanos , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Esclerosis Múltiple/metabolismo , Enfermedades Neuroinflamatorias , Médula Espinal/metabolismo , Catelicidinas
9.
Neurobiol Dis ; 174: 105874, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36154877

RESUMEN

Glial cells are the most abundant cells of the brain, outnumbering neurons. These multifunctional cells are crucial for maintaining brain homeostasis by providing trophic and nutritional support to neurons, sculpting synapses, and providing an immune defense. Glia are highly plastic and undergo both structural and functional alterations in response to changes in the brain microenvironment. Glial phenotypes are intimately regulated by underlying metabolic machinery, which dictates the effector functions of these cells. Altered brain energy metabolism and chronic neuroinflammation are common features of several neurodegenerative diseases. Microglia and astrocytes are the major glial cells fueling the ongoing neuroinflammatory process, exacerbating neurodegeneration. Distinct metabolic perturbations in microglia and astrocytes, including altered carbohydrate, lipid, and amino acid metabolism have been documented in neurodegenerative diseases. These disturbances aggravate the neurodegenerative process by potentiating the inflammatory activation of glial cells. This review covers the recent advances in the molecular aspects of glial metabolic changes in the pathophysiology of neurodegenerative diseases. Finally, we discuss studies exploiting glial metabolism as a potential therapeutic avenue in neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/metabolismo , Neuroglía/fisiología , Astrocitos/metabolismo , Microglía/metabolismo , Neuronas/metabolismo
10.
Eur J Nucl Med Mol Imaging ; 49(12): 4073-4087, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35680737

RESUMEN

PURPOSE: Hydrogen sulfide (H2S) plays important roles in brain pathophysiology. However, nuclear imaging probes for the in vivo detection of brain H2S in living animals have not been developed. Here, we report the first nuclear imaging probe that enables in vivo imaging of endogenous H2S in the brain of live mice. METHODS: Utilizing a bis(thiosemicarbazone) backbone, a fluorescent ATSM-FITC conjugate was synthesized. Its copper complex, Cu(ATSM-FITC) was thoroughly tested as a biosensor for H2S. The same ATSM-FITC ligand was quantitatively labeled with [64Cu]CuCl2 to obtain a radioactive [64Cu][Cu(ATSM-FITC)] imaging probe. Biodistribution and positron emission tomography (PET) imaging studies were performed in healthy mice and neuroinflammation models. RESULTS: The Cu(ATSM-FITC) complex reacts instantly with H2S to release CuS and becomes fluorescent. It showed excellent reactivity, sensitivity, and selectivity to H2S. Endogenous H2S levels in living cells were successfully detected by fluorescence microscopy. Exceptionally high brain uptake of [64Cu][Cu(ATSM-FITC)] (> 9% ID/g) was observed in biodistribution and PET imaging studies. Subtle changes in brain H2S concentrations in live mice were accurately detected by quantitative PET imaging. Due to its dual modality feature, increased H2S levels in neuroinflammation models were characterized at the subcellular level by fluorescence imaging and at the whole-body scale by PET imaging. CONCLUSION: Our biosensor can be readily utilized to study brain H2S function in live animal models and shows great potential as a novel imaging agent for diagnosing brain diseases.


Asunto(s)
Complejos de Coordinación , Sulfuro de Hidrógeno , Compuestos Organometálicos , Tiosemicarbazonas , Animales , Encéfalo/diagnóstico por imagen , Cobre , Fluoresceína-5-Isotiocianato , Colorantes Fluorescentes , Ligandos , Ratones , Enfermedades Neuroinflamatorias , Distribución Tisular
11.
J Immunol ; 204(5): 1299-1309, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31980577

RESUMEN

LETM1 domain-containing protein 1 (LETMD1), also known as HCCR-1, is a mitochondrial protein and is known to regulate p53 and STAT3 activities in cancer cells. In this study, we present, for the first time (to our knowledge), data indicating that LETMD1 suppresses multiple immune responses in monocyte/macrophage lineage cells and mouse primary macrophages. Attenuation of LETMD1 expression with specific small interfering RNA and short hairpin RNA constructs enhanced LPS-induced expressions of inflammatory mediators in macrophages. In addition, LETMD1 attenuation caused potentiation of phagocytosis as well as migration in a macrophage-like cell line, U937. These enhancing effects were associated with altered activation of signaling adaptors (such as NF-κB, MAPKs, p53, and JAK-STAT) involved in TLR4 signaling. Especially, LETMD1 selectively regulated TLR4-induced NF-κB activation via MyD88 but not via TIR-domain-containing adapter-inducing IFN-ß (TRIF). Attenuation of LETMD1 expression caused mitochondrial hyperpolarization and subsequent decrease in ATP production and increase in mitochondrial/cellular reactive oxygen species (ROS) and intracellular calcium levels. LETMD1 attenuation also enhanced LPS-induced expression of NADPH oxidase (NOX) 2, the main producer of cellular ROS in phagocytes, through augmenting IFN regulatory factor 1. Accordingly, treatment with ROS scavenger, NOX2 suppressing agents, or calcium chelators resulted in suppression of LPS-induced cytokine production as well as NF-κB activation in cells with LETMD1 attenuation. These findings reveal a previously unknown function of LETMD1 and provide evidences showing LETMD1 negatively regulates macrophage functions by modulating mitochondrial function, subsequent ROS generation, and NF-κB activation.


Asunto(s)
Lipopolisacáridos/toxicidad , Macrófagos/inmunología , FN-kappa B/inmunología , Fagocitosis/efectos de los fármacos , Proteínas Proto-Oncogénicas/inmunología , Especies Reactivas de Oxígeno/inmunología , Animales , Citocinas/inmunología , Células HEK293 , Humanos , Inflamación/inducido químicamente , Inflamación/inmunología , Inflamación/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/inmunología , Macrófagos/patología , Ratones , Mitocondrias/inmunología , Mitocondrias/patología , Células RAW 264.7 , Células THP-1 , Células U937
12.
Brain ; 144(2): 528-552, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33382892

RESUMEN

The complement system is part of the innate immune system that comprises several small proteins activated by sequential cleavages. The majority of these complement components, such as components 3a (C3a) and C5a, are chemotactic and pro-inflammatory. However, in this study, we revealed an inhibitory role of complement component 8 gamma (C8G) in neuroinflammation. In patients with Alzheimer's disease, who exhibit strong neuroinflammation, we found higher C8G levels in brain tissue, CSF, and plasma. Our novel findings also showed that the expression level of C8G increases in the inflamed mouse brain, and that C8G is mainly localized to brain astrocytes. Experiments using recombinant C8G protein and shRNA-mediated knockdown showed that C8G inhibits glial hyperactivation, neuroinflammation, and cognitive decline in acute and chronic animal models of Alzheimer's disease. Additionally, we identified sphingosine-1-phosphate receptor 2 (S1PR2) as a novel interaction protein of C8G and demonstrated that astrocyte-derived C8G interacts with S1PR2 to antagonize the pro-inflammatory action of S1P in microglia. Taken together, our results reveal the previously unrecognized role of C8G as a neuroinflammation inhibitor. Our findings pave the way towards therapeutic containment of neuroinflammation in Alzheimer's disease and related neurological diseases.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Complemento C8/inmunología , Encefalitis/inmunología , Enfermedad de Alzheimer/inmunología , Animales , Astrocitos/inmunología , Células Cultivadas , Complemento C8/líquido cefalorraquídeo , Masculino , Ratones Endogámicos C57BL , Microglía/inmunología , Subunidades de Proteína/inmunología , Receptores de Esfingosina-1-Fosfato/inmunología
13.
Cell Mol Life Sci ; 79(1): 32, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34910246

RESUMEN

The hypothalamus is a critical brain region for the regulation of energy homeostasis. Over the years, studies on energy metabolism primarily focused on the neuronal component of the hypothalamus. Studies have recently uncovered the vital role of glial cells as an additional player in energy balance regulation. However, their inflammatory activation under metabolic stress condition contributes to various metabolic diseases. The recruitment of monocytes and macrophages in the hypothalamus helps sustain such inflammation and worsens the disease state. Neurons were found to actively participate in hypothalamic inflammatory response by transmitting signals to the surrounding non-neuronal cells. This activation of different cell types in the hypothalamus leads to chronic, low-grade inflammation, impairing energy balance and contributing to defective feeding habits, thermogenesis, and insulin and leptin signaling, eventually leading to metabolic disorders (i.e., diabetes, obesity, and hypertension). The hypothalamus is also responsible for the causation of systemic aging under metabolic stress. A better understanding of the multiple factors contributing to hypothalamic inflammation, the role of the different hypothalamic cells, and their crosstalks may help identify new therapeutic targets. In this review, we focus on the role of glial cells in establishing a cause-effect relationship between hypothalamic inflammation and the development of metabolic diseases. We also cover the role of other cell types and discuss the possibilities and challenges of targeting hypothalamic inflammation as a valid therapeutic approach.


Asunto(s)
Envejecimiento/patología , Hipotálamo/patología , Inflamación/patología , Enfermedades Metabólicas/patología , Animales , Modelos Animales de Enfermedad , Humanos , Modelos Biológicos
14.
J Neurosci ; 40(47): 8994-9011, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33067363

RESUMEN

Although ventrolateral preoptic (VLPO) nucleus is regarded as a center for sleep promotion, the exact mechanisms underlying the sleep regulation are unknown. Here, we used optogenetic tools to identify the key roles of VLPO astrocytes in sleep promotion. Optogenetic stimulation of VLPO astrocytes increased sleep duration in the active phase in naturally sleep-waking adult male rats (n = 6); it also increased the extracellular ATP concentration (n = 3) and c-Fos expression (n = 3-4) in neurons within the VLPO. In vivo microdialysis analyses revealed an increase in the activity of VLPO astrocytes and ATP levels during sleep states (n = 4). Moreover, metabolic inhibition of VLPO astrocytes reduced ATP levels (n = 4) and diminished sleep duration (n = 4). We further show that tissue-nonspecific alkaline phosphatase (TNAP), an ATP-degrading enzyme, plays a key role in mediating the somnogenic effects of ATP released from astrocytes (n = 5). An appropriate sample size for all experiments was based on statistical power calculations. Our results, taken together, indicate that astrocyte-derived ATP may be hydrolyzed into adenosine by TNAP, which may in turn act on VLPO neurons to promote sleep.SIGNIFICANCE STATEMENT Glia have recently been at the forefront of neuroscience research. Emerging evidence illustrates that astrocytes, the most abundant glial cell type, are the functional determinants for fates of neurons and other glial cells in the central nervous system. In this study, we newly identified the pivotal role of hypothalamic ventrolateral preoptic (VLPO) astrocytes in the sleep regulation, and provide novel insights into the mechanisms underlying the astrocyte-mediated sleep regulation.


Asunto(s)
Astrocitos/fisiología , Área Preóptica/fisiología , Sueño/fisiología , Adenosina/metabolismo , Adenosina Trifosfato/metabolismo , Fosfatasa Alcalina/biosíntesis , Fosfatasa Alcalina/genética , Animales , Citocinas/metabolismo , Masculino , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Neurotransmisores/metabolismo , Optogenética , Técnicas de Placa-Clamp , Estimulación Luminosa , Área Preóptica/citología , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Proteínas Proto-Oncogénicas c-fos/genética , Ratas , Ratas Sprague-Dawley
15.
J Biol Chem ; 295(50): 16906-16919, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33060198

RESUMEN

Kinases are critical components of intracellular signaling pathways and have been extensively investigated with regard to their roles in cancer. p21-activated kinase-1 (PAK1) is a serine/threonine kinase that has been previously implicated in numerous biological processes, such as cell migration, cell cycle progression, cell motility, invasion, and angiogenesis, in glioma and other cancers. However, the signaling network linked to PAK1 is not fully defined. We previously reported a large-scale yeast genetic interaction screen using toxicity as a readout to identify candidate PAK1 genetic interactions. En masse transformation of the PAK1 gene into 4,653 homozygous diploid Saccharomyces cerevisiae yeast deletion mutants identified ∼400 candidates that suppressed yeast toxicity. Here we selected 19 candidate PAK1 genetic interactions that had human orthologs and were expressed in glioma for further examination in mammalian cells, brain slice cultures, and orthotopic glioma models. RNAi and pharmacological inhibition of potential PAK1 interactors confirmed that DPP4, KIF11, mTOR, PKM2, SGPP1, TTK, and YWHAE regulate PAK1-induced cell migration and revealed the importance of genes related to the mitotic spindle, proteolysis, autophagy, and metabolism in PAK1-mediated glioma cell migration, drug resistance, and proliferation. AKT1 was further identified as a downstream mediator of the PAK1-TTK genetic interaction. Taken together, these data provide a global view of PAK1-mediated signal transduction pathways and point to potential new drug targets for glioma therapy.


Asunto(s)
Movimiento Celular , Glioma/patología , Saccharomyces cerevisiae/crecimiento & desarrollo , Transducción de Señal , Huso Acromático/genética , Quinasas p21 Activadas/genética , Animales , Línea Celular , Proliferación Celular , Supervivencia Celular , Modelos Animales de Enfermedad , Epistasis Genética , Femenino , Glioma/genética , Glioma/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Mitosis , Inhibidores de Proteínas Quinasas/farmacología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Quinasas p21 Activadas/metabolismo
16.
Glia ; 69(4): 971-996, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33251681

RESUMEN

Diabetic peripheral neuropathy (DPN) is a common complication of uncontrolled diabetes. The pathogenesis of DPN is associated with chronic inflammation in dorsal root ganglion (DRG), eventually causing structural and functional changes. Studies on DPN have primarily focused on neuronal component, and there is limited knowledge about the role of satellite glial cells (SGCs), although they completely enclose neuronal soma in DRG. Lipocalin-2 (LCN2) is a pro-inflammatory acute-phase protein found in high levels in diverse neuroinflammatory and metabolic disorders. In diabetic DRG, the expression of LCN2 was increased exclusively in the SGCs. This upregulation of LCN2 in SGCs correlated with increased inflammatory responses in DRG and sciatic nerve. Furthermore, diabetes-induced inflammation and morphological changes in DRG, as well as sciatic nerve, were attenuated in Lcn2 knockout (KO) mice. Lcn2 gene ablation also ameliorated neuropathy phenotype as determined by nerve conduction velocity and intraepidermal nerve fiber density. Mechanistically, studies using specific gene KO mice, adenovirus-mediated gene overexpression strategy, and primary cultures of DRG SGCs and neurons have demonstrated that LCN2 enhances the expression of mitochondrial gate-keeping regulator pyruvate dehydrogenase kinase-2 (PDK2) through PPARß/δ, thereby inhibiting pyruvate dehydrogenase activity and increasing production of glycolytic end product lactic acid in DRG SGCs and neurons of diabetic mice. Collectively, our findings reveal a crucial role of glial LCN2-PPARß/δ-PDK2-lactic acid axis in progression of DPN. Our results establish a link between pro-inflammatory LCN2 and glycolytic PDK2 in DRG SGCs and neurons and propose a novel glia-based mechanism and drug target for therapy of DPN. MAIN POINTS: Diabetes upregulates LCN2 in satellite glia, which in turn increases pyruvate dehydrogenase kinase-2 (PDK2) expression and lactic acid production in dorsal root ganglia (DRG). Glial LCN2-PDK2-lactic acid axis in DRG plays a crucial role in the pathogenesis of diabetic neuropathy.


Asunto(s)
Diabetes Mellitus Experimental , Neuropatías Diabéticas , Lipocalina 2 , PPAR-beta , Animales , Ratones , Ganglios Espinales , Inflamación , Ácido Láctico , Lipocalina 2/genética , Ratones Noqueados , Neuroglía , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora
17.
Molecules ; 26(4)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673167

RESUMEN

The leaves of Homalomena aromatica are traditionally used in Bangladesh for the treatment of different chronic ailments. The purpose of this study was to explore in vitro antioxidant, thrombolytic activities, and in vivo neuropharmacological effects of methanolic extract of Homalomena aromatica (MEHA) leaves. Antioxidant activity of MEHA was assessed by a DPPH free radical scavenging assay and total phenolics content, total flavonoids content were also measured. The thrombolytic activity was determined by percentage of clot lysis and neuropharmacological activities by hole board, tail suspension, forced swimming and elevated plus maze tests. The results showed that the IC50 value of the extract against DPPH was 199.51 µg/mL. Quantitative analysis displayed higher contents of phenolics and flavonoids (147.71 mg gallic acid equivalent/g & 66.65 mg quercetin equivalent/g dried extract, respectively). The extract also showed a significant clot lysis (33.31%) activity. In case of anxiolytic activity, the elevate plus maze (EPM) test demonstrated an increase in time spent in open arms, and in case of hole board test, the number of head dipping was also significantly increased (p < 0.05). All the test compared with control (1% Tween in water) and standard (diazepam 1 mg/kg), significant dose (200 & 400 mg/kg) dependent anxiolytic activity was found. In antidepressant activity, there was a significant decrease in period of immobility in both test models (tail suspension and forced swimming) (p < 0.05). Moreover, 13 compounds were identified as bioactive, showed good binding affinities to xanthine oxidoreductase, tissue plasminogen activator receptor, potassium channel receptor, human serotonin receptor targets in molecular docking experiments. Furthermore, ADME/T analysis revealed their drug-likeness, likely pharmacological actions and non-toxic upon consumption. Taken together, our finding support the traditional medicinal use of this plant, which may provide a potential source for future drug discovery.


Asunto(s)
Antioxidantes/química , Araceae/química , Fibrinolíticos/química , Extractos Vegetales/química , Animales , Antidepresivos/química , Antidepresivos/farmacología , Antioxidantes/farmacología , Compuestos de Bifenilo/química , Simulación por Computador , Tiempo de Lisis del Coágulo de Fibrina , Fibrinolíticos/farmacología , Flavonoides/química , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Humanos , Ratones , Simulación del Acoplamiento Molecular , Neurofarmacología , Fenoles/química , Picratos/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Receptores de Serotonina/química , Antagonistas de la Serotonina/química , Antagonistas de la Serotonina/farmacología , Natación
18.
Medicina (Kaunas) ; 57(4)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915966

RESUMEN

To date, there is no curable treatment option for non-hereditary degenerative cerebellar ataxia. Here we report the case of a patient with sporadic adult-onset ataxia (SAOA) who underwent allogeneic bone marrow-derived mesenchymal stem cell (MSC) therapy via the intrathecal route. A 60-year-old male patient visited our clinic complaining of progressive gait disturbance that commenced two years ago. Upon neurologic examination, the patient exhibited limb dysmetria and gait ataxia. Brain magnetic resonance imaging (MRI) revealed cerebellar atrophy whereas the autonomic function test was normal. The patient was diagnosed with SAOA. The medications that were initially prescribed had no significant effects on the course of this disease and the symptoms deteriorated progressively. At the age of 64, the patient was treated with allogeneic bone marrow-derived MSC therapy. The subsequent K-SARA (Korean version of the Scale for the Assessment and Rating of Ataxia) scores demonstrated a distinct improvement up until 10 months post-administration. No adverse events were reported. The improved post-treatment K-SARA scores may suggest that the MSC therapy can have a neuroprotective effect and that stem cell therapy may serve as a potential therapeutic option for degenerative cerebellar ataxia.


Asunto(s)
Ataxia Cerebelosa , Trasplante de Células Madre Hematopoyéticas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Adulto , Médula Ósea , Ataxia Cerebelosa/terapia , Humanos , Masculino , Persona de Mediana Edad
19.
Glia ; 68(9): 1794-1809, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32077526

RESUMEN

Finding causative genetic mutations is important in the diagnosis and treatment of hereditary peripheral neuropathies. This study was conducted to find new genes involved in the pathophysiology of hereditary peripheral neuropathy. We identified a new mutation in the EBP50 gene, which is co-segregated with neuropathic phenotypes, including motor and sensory deficit in a family with Charcot-Marie-Tooth disease. EBP50 is known to be important for the formation of microvilli in epithelial cells, and the discovery of this gene mutation allowed us to study the function of EBP50 in the nervous system. EBP50 was strongly expressed in the nodal and paranodal regions of sciatic nerve fibers, where Schwann cell microvilli contact the axolemma, and at the growth tips of primary Schwann cells. In addition, EBP50 expression was decreased in mouse models of peripheral neuropathy. Knockout mice were used to study EBP50 function in the peripheral nervous system. Interestingly motor function deficit and abnormal histology of nerve fibers were observed in EBP50+/- heterozygous mice at 12 months of age, but not 3 months. in vitro studies using Schwann cells showed that NRG1-induced AKT activation and migration were significantly reduced in cells overexpressing the I325V mutant of EBP50 or cells with knocked-down EBP50 expression. In conclusion, we show for the first time that loss of function due to EBP50 gene deficiency or mutation can cause peripheral neuropathy.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Ratones , Ratones Noqueados , Mutación , Nervios Periféricos , Sistema Nervioso Periférico
20.
Biochem Cell Biol ; 98(2): 137-144, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31071273

RESUMEN

Mitochondria affect cellular functions alone or in cooperation with other cellular organelles. Recent research has demonstrated the close relationship of mitochondria with the endoplasmic reticulum (ER), both at the physical and the functional level. In an effort to define the combined effect of mitochondrial dysfunction (MD) and ER stress in the proinflammatory activities of macrophages, the human macrophage-like monocytic leukemia cell line THP-1 was treated with mitochondrial electron transport chain (ETC) blockers, and changes in the cellular responses upon stimulation by interferon (IFN)-γ were analyzed. Inducing mitochondrial dysfunction (MD) with ETC blockers resulted in suppression of IFN-induced activation of JAK1 and STAT1/3, as well as the expression of STAT1-regulated genes. In addition, experiments utilizing pharmacological modulators of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and liver kinase B1 (LKB1)-deficient HeLa cells demonstrated that these suppressive effects are mediated by the LKB1-AMPK pathway. Treatment with pharmacological inhibitors of ER stress sensors failed to affect these processes, thus indicating that involvement of ER stress is not required. These results indicate that MD, induced by blocking the ETC, affects IFN-induced activation of JAK-STAT and associated inflammatory changes in THP-1 cells through the LKB1-AMPK pathway independently of ER stress.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Janus Quinasa 1/metabolismo , Mitocondrias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factor de Transcripción STAT1/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Transporte de Electrón , Estrés del Retículo Endoplásmico/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glicosilación , Células HEK293 , Células HeLa , Humanos , Inflamación , Interferón gamma/metabolismo , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Células THP-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA