Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 106(2): 566-579, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33476427

RESUMEN

High-throughput phenotyping systems are powerful, dramatically changing our ability to document, measure, and detect biological phenomena. Here, we describe a cost-effective combination of a custom-built imaging platform and deep-learning-based computer vision pipeline. A minimal version of the maize (Zea mays) ear scanner was built with low-cost and readily available parts. The scanner rotates a maize ear while a digital camera captures a video of the surface of the ear, which is then digitally flattened into a two-dimensional projection. Segregating GFP and anthocyanin kernel phenotypes are clearly distinguishable in ear projections and can be manually annotated and analyzed using image analysis software. Increased throughput was attained by designing and implementing an automated kernel counting system using transfer learning and a deep learning object detection model. The computer vision model was able to rapidly assess over 390 000 kernels, identifying male-specific transmission defects across a wide range of GFP-marked mutant alleles. This includes a previously undescribed defect putatively associated with mutation of Zm00001d002824, a gene predicted to encode a vacuolar processing enzyme. Thus, by using this system, the quantification of transmission data and other ear and kernel phenotypes can be accelerated and scaled to generate large datasets for robust analyses.


Asunto(s)
Semillas/anatomía & histología , Zea mays/anatomía & histología , Análisis Costo-Beneficio , Conjuntos de Datos como Asunto , Aprendizaje Profundo , Ensayos Analíticos de Alto Rendimiento/economía , Ensayos Analíticos de Alto Rendimiento/instrumentación , Ensayos Analíticos de Alto Rendimiento/métodos , Fenotipo , Semillas/clasificación , Grabación en Video/métodos , Zea mays/clasificación
2.
Environ Microbiol ; 22(8): 3505-3521, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32510835

RESUMEN

Microbes and sunlight convert terrigenous dissolved organic matter (DOM) in surface waters to greenhouse gases. Prior studies show contrasting results about how biological and photochemical processes interact to contribute to the degradation of DOM. In this study, DOM leached from the organic layer of tundra soil was exposed to natural sunlight or kept in the dark, incubated in the dark with the natural microbial community, and analysed for gene expression and DOM chemical composition. Microbial gene expression (metatranscriptomics) in light and dark treatments diverged substantially after 4 h. Gene expression suggested that sunlight exposure of DOM initially stimulated microbial growth by (i) replacing the function of enzymes that degrade higher molecular weight DOM such as enzymes for aromatic carbon degradation, oxygenation, and decarboxylation, and (ii) releasing low molecular weight compounds and inorganic nutrients from DOM. However, growth stimulation following sunlight exposure of DOM came at a cost. Sunlight depleted the pool of aromatic compounds that supported microbial growth in the dark treatment, ultimately causing slower growth in the light treatment over 5 days. These first measurements of microbial metatranscriptomic responses to photo-alteration of DOM provide a mechanistic explanation for how sunlight exposure of terrigenous DOM alters microbial processing and respiration of DOM.


Asunto(s)
Bacterias/metabolismo , Agua Dulce/microbiología , Compuestos Orgánicos/metabolismo , Luz Solar , Bacterias/genética , Carbono/metabolismo , Análisis Costo-Beneficio , Perfilación de la Expresión Génica , Gases de Efecto Invernadero/análisis , Suelo/química , Transcriptoma/genética
3.
Proc Natl Acad Sci U S A ; 108(4): 1201-8, 2011 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-21245313

RESUMEN

Argonaute-associated siRNAs and Piwi-associated piRNAs have overlapping roles in silencing mobile genetic elements in animals. In Caenorhabditis elegans, mutator (mut) class genes mediate siRNA-guided repression of transposons as well as exogenous RNAi, but their roles in endogenous RNA silencing pathways are not well-understood. To characterize the endogenous small RNAs dependent on mut class genes, small RNA populations from a null allele of mut-16 as well as a regulatory mut-16(mg461) allele that disables only somatic RNAi were subjected to deep sequencing. Additionally, each of the mut class genes was tested for a requirement in 26G siRNA pathways. The results indicate that mut-16 is an essential factor in multiple endogenous germline and somatic siRNA pathways involving several distinct Argonautes and RNA-dependent RNA polymerases. The results also reveal essential roles for mut-2 and mut-7 in the ERGO-1 class 26G siRNA pathway and less critical roles for mut-8, mut-14, and mut-15. We show that transposons are hypersusceptible to mut-16-dependent silencing and identify a requirement for the siRNA machinery in piRNA biogenesis from Tc1 transposons. We also show that the soma-specific mut-16(mg461) mutant allele is present in multiple C. elegans laboratory strains.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , ARN Interferente Pequeño/genética , Transducción de Señal/genética , Alelos , Animales , Northern Blotting , Elementos Transponibles de ADN/genética , Embrión no Mamífero/metabolismo , Exorribonucleasas/genética , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/metabolismo , Masculino , Mutación , ARN de Helminto/clasificación , ARN de Helminto/genética , ARN de Helminto/metabolismo , ARN Interferente Pequeño/clasificación , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Especificidad de la Especie
4.
PLoS Genet ; 7(11): e1002369, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22102828

RESUMEN

Endogenous small interfering RNAs (siRNAs) are a class of naturally occuring regulatory RNAs found in fungi, plants, and animals. Some endogenous siRNAs are required to silence transposons or function in chromosome segregation; however, the specific roles of most endogenous siRNAs are unclear. The helicase gene eri-6/7 was identified in the nematode Caenorhabditis elegans by the enhanced response to exogenous double-stranded RNAs (dsRNAs) of the null mutant. eri-6/7 encodes a helicase homologous to small RNA factors Armitage in Drosophila, SDE3 in Arabidopsis, and Mov10 in humans. Here we show that eri-6/7 mutations cause the loss of 26-nucleotide (nt) endogenous siRNAs derived from genes and pseudogenes in oocytes and embryos, as well as deficiencies in somatic 22-nucleotide secondary siRNAs corresponding to the same loci. About 80 genes are eri-6/7 targets that generate the embryonic endogenous siRNAs that silence the corresponding mRNAs. These 80 genes share extensive nucleotide sequence homology and are poorly conserved, suggesting a role for these endogenous siRNAs in silencing of and thereby directing the fate of recently acquired, duplicated genes. Unlike most endogenous siRNAs in C. elegans, eri-6/7-dependent siRNAs require Dicer. We identify that the eri-6/7-dependent siRNAs have a passenger strand that is ∼19 nt and is inset by ∼3-4 nts from both ends of the 26 nt guide siRNA, suggesting non-canonical Dicer processing. Mutations in the Argonaute ERGO-1, which associates with eri-6/7-dependent 26 nt siRNAs, cause passenger strand stabilization, indicating that ERGO-1 is required to separate the siRNA duplex, presumably through endonucleolytic cleavage of the passenger strand. Thus, like several other siRNA-associated Argonautes with a conserved RNaseH motif, ERGO-1 appears to be required for siRNA maturation.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , ADN Helicasas/genética , Duplicación de Gen/genética , Silenciador del Gen , Oocitos/metabolismo , ARN Interferente Pequeño/genética , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , ADN Helicasas/metabolismo , Regulación de la Expresión Génica , Mutación , Seudogenes/genética , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/genética
5.
Plant Cell ; 22(2): 481-96, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20190077

RESUMEN

Plants respond to virus infections by activation of RNA-based silencing, which limits infection at both the single-cell and system levels. Viruses encode RNA silencing suppressor proteins that interfere with this response. Wild-type Arabidopsis thaliana is immune to silencing suppressor (HC-Pro)-deficient Turnip mosaic virus, but immunity was lost in the absence of DICER-LIKE proteins DCL4 and DCL2. Systematic analysis of susceptibility and small RNA formation in Arabidopsis mutants lacking combinations of RNA-dependent RNA polymerase (RDR) and DCL proteins revealed that the vast majority of virus-derived small interfering RNAs (siRNAs) were dependent on DCL4 and RDR1, although full antiviral defense also required DCL2 and RDR6. Among the DCLs, DCL4 was sufficient for antiviral silencing in inoculated leaves, but DCL2 and DCL4 were both involved in silencing in systemic tissues (inflorescences). Basal levels of antiviral RNA silencing and siRNA biogenesis were detected in mutants lacking RDR1, RDR2, and RDR6, indicating an alternate route to form double-stranded RNA that does not depend on the three previously characterized RDR proteins.


Asunto(s)
Arabidopsis/enzimología , ARN Polimerasas Dirigidas por ADN/metabolismo , Virus de Plantas/genética , ARN Interferente Pequeño/genética , Ribonucleasa III/genética , Arabidopsis/genética , Mutación
6.
Plant Cell ; 22(4): 1074-89, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20407027

RESUMEN

MicroRNAs (miRNAs) are short regulatory RNAs processed from partially self-complementary foldbacks within longer MIRNA primary transcripts. Several MIRNA families are conserved deeply through land plants, but many are present only in closely related species or are species specific. The finding of numerous evolutionarily young MIRNA, many with low expression and few if any targets, supports a rapid birth-death model for MIRNA evolution. A systematic analysis of MIRNA genes and families in the close relatives, Arabidopsis thaliana and Arabidopsis lyrata, was conducted using both whole-genome comparisons and high-throughput sequencing of small RNAs. Orthologs of 143 A. thaliana MIRNA genes were identified in A. lyrata, with nine having significant sequence or processing changes that likely alter function. In addition, at least 13% of MIRNA genes in each species are unique, despite their relatively recent speciation (approximately 10 million years ago). Alignment of MIRNA foldbacks to the Arabidopsis genomes revealed evidence for recent origins of 32 families by inverted or direct duplication of mostly protein-coding gene sequences, but less than half of these yield miRNA that are predicted to target transcripts from the originating gene family. miRNA nucleotide divergence between A. lyrata and A. thaliana orthologs was higher for young MIRNA genes, consistent with reduced purifying selection compared with deeply conserved MIRNA genes. Additionally, target sites of younger miRNA were lost more frequently than for deeply conserved families. In summary, our systematic analyses emphasize the dynamic nature of the MIRNA complement of plant genomes.


Asunto(s)
Arabidopsis/genética , Evolución Molecular , MicroARNs/genética , ARN de Planta/genética , Hibridación Genómica Comparativa , Secuencia Conservada , Genes de Plantas , Genoma de Planta , Alineación de Secuencia
8.
Proc Natl Acad Sci U S A ; 107(1): 466-71, 2010 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-20018656

RESUMEN

Transacting siRNA (tasiRNA) biogenesis in Arabidopsis is initiated by microRNA (miRNA) -guided cleavage of primary transcripts. In the case of TAS3 tasiRNA formation, ARGONAUTE7 (AGO7)-miR390 complexes interact with primary transcripts at two sites, resulting in recruitment of RNA-DEPENDENT RNA POLYMERASE6 for dsRNA biosynthesis. An extensive screen for Arabidopsis mutants with specific defects in TAS3 tasiRNA biogenesis or function was done. This yielded numerous ago7 mutants, one dcl4 mutant, and two mutants that accumulated low levels of miR390. A direct genome sequencing-based approach to both map and rapidly identify one of the latter mutant alleles was developed. This revealed a G-to-A point mutation (mir390a-1) that was calculated to stabilize a relatively nonpaired region near the base of the MIR390a foldback, resulting in misprocessing of the miR390/miR390* duplex and subsequent reduced TAS3 tasiRNA levels. Directed substitutions, as well as analysis of variation at paralogous miR390-generating loci (MIR390a and MIR390b), indicated that base pair properties and nucleotide identity within a region 4-6 bases below the miR390/miR390* duplex region contributed to the efficiency and accuracy of precursor processing.


Asunto(s)
Arabidopsis/genética , MicroARNs/genética , Precursores del ARN/metabolismo , Análisis de Secuencia de ADN , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Análisis Mutacional de ADN , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , MicroARNs/química , MicroARNs/metabolismo , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Precursores del ARN/genética
9.
Toxicol Sci ; 187(2): 325-344, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35377459

RESUMEN

The aryl hydrocarbon receptor (AHR) is required for vertebrate development and is also activated by exogenous chemicals, including polycyclic aromatic hydrocarbons (PAHs) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). AHR activation is well-understood, but roles of downstream molecular signaling events are largely unknown. From previous transcriptomics in 48 h postfertilization (hpf) zebrafish exposed to several PAHs and TCDD, we found wfikkn1 was highly coexpressed with cyp1a (marker for AHR activation). Thus, we hypothesized wfikkn1's role in AHR signaling, and showed that wfikkn1 expression was Ahr2 (zebrafish ortholog of human AHR)-dependent in developing zebrafish exposed to TCDD. To functionally characterize wfikkn1, we made a CRISPR-Cas9 mutant line with a 16-bp deletion in wfikkn1's exon, and exposed wildtype and mutants to dimethyl sulfoxide or TCDD. 48-hpf mRNA sequencing revealed over 700 genes that were differentially expressed (p < .05, log2FC > 1) between each pair of treatment combinations, suggesting an important role for wfikkn1 in altering both the 48-hpf transcriptome and TCDD-induced expression changes. Mass spectrometry-based proteomics of 48-hpf wildtype and mutants revealed 325 significant differentially expressed proteins. Functional enrichment demonstrated wfikkn1 was involved in skeletal muscle development and played a role in neurological pathways after TCDD exposure. Mutant zebrafish appeared morphologically normal but had significant behavior deficiencies at all life stages, and absence of Wfikkn1 did not significantly alter TCDD-induced behavior effects at all life stages. In conclusion, wfikkn1 did not appear to be significantly involved in TCDD's overt toxicity but is likely a necessary functional member of the AHR signaling cascade.


Asunto(s)
Dibenzodioxinas Policloradas , Hidrocarburos Policíclicos Aromáticos , Animales , Embrión no Mamífero , Dibenzodioxinas Policloradas/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Proteoma/genética , Proteoma/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Transcriptoma , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
10.
RNA ; 15(5): 992-1002, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19307293

RESUMEN

The advent of high-throughput sequencing (HTS) methods has enabled direct approaches to quantitatively profile small RNA populations. However, these methods have been limited by several factors, including representational artifacts and lack of established statistical methods of analysis. Furthermore, massive HTS data sets present new problems related to data processing and mapping to a reference genome. Here, we show that cluster-based sequencing-by-synthesis technology is highly reproducible as a quantitative profiling tool for several classes of small RNA from Arabidopsis thaliana. We introduce the use of synthetic RNA oligoribonucleotide standards to facilitate objective normalization between HTS data sets, and adapt microarray-type methods for statistical analysis of multiple samples. These methods were tested successfully using mutants with small RNA biogenesis (miRNA-defective dcl1 mutant and siRNA-defective dcl2 dcl3 dcl4 triple mutant) or effector protein (ago1 mutant) deficiencies. Computational methods were also developed to rapidly and accurately parse, quantify, and map small RNA data.


Asunto(s)
Arabidopsis/genética , Perfilación de la Expresión Génica , ARN de Planta/genética , Biología Computacional , Análisis de Secuencia de ARN
11.
Eukaryot Cell ; 9(10): 1549-56, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20675579

RESUMEN

Light signaling pathways and circadian clocks are inextricably linked and have profound effects on behavior in most organisms. Here, we used chromatin immunoprecipitation (ChIP) sequencing to uncover direct targets of the Neurospora crassa circadian regulator White Collar Complex (WCC). The WCC is a blue-light receptor and the key transcription factor of the circadian oscillator. It controls a transcriptional network that regulates ∼20% of all genes, generating daily rhythms and responses to light. We found that in response to light, WCC binds to hundreds of genomic regions, including the promoters of previously identified clock- and light-regulated genes. We show that WCC directly controls the expression of 24 transcription factor genes, including the clock-controlled adv-1 gene, which controls a circadian output pathway required for daily rhythms in development. Our findings provide links between the key circadian activator and effectors in downstream regulatory pathways.


Asunto(s)
Relojes Circadianos , Regulación Fúngica de la Expresión Génica , Luz , Neurospora crassa/fisiología , Transducción de Señal , Factores de Transcripción/metabolismo , Inmunoprecipitación de Cromatina , Ritmo Circadiano , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Redes Reguladoras de Genes , Genoma Fúngico/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Neurospora crassa/genética , Neurospora crassa/metabolismo , Reacción en Cadena de la Polimerasa , Factores de Transcripción/genética
12.
Clin Orthop Relat Res ; 469(3): 768-75, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20848241

RESUMEN

BACKGROUND: Orthopaedic surgeons have unique training and experience in diagnosis of fractures, both accidental and nonaccidental. That experience is valuable in identifying physical child abuse and in avoiding false accusations or convictions. Both aspects are important to the welfare of children and their families. The events that follow a report of child abuse are outside the training and experience of most orthopaedic surgeons. QUESTIONS/PURPOSES: What process follows a report of suspected child abuse? What unexpected outcomes or results occur in this process? Are medical conclusions used in this process consistent with the state of our knowledge? METHODS: The child abuse legal process is described as experienced by one orthopaedic surgeon. Examples of unexpected problems that occurred in cases that went to trial are described. CONCLUSIONS: Inappropriate outcomes can result from incomplete or incorrectly applied information. The input of the orthopaedic surgeon is often needed to provide the best information available to ensure that the best interests of the child and the family are protected. Working within a hospital team is the preferred method, but direct courtroom testimony is sometimes necessary.


Asunto(s)
Maltrato a los Niños/diagnóstico , Víctimas de Crimen/legislación & jurisprudencia , Fracturas Óseas/diagnóstico , Traumatismo Múltiple/diagnóstico , Ortopedia , Rol del Médico , Niño , Maltrato a los Niños/legislación & jurisprudencia , Preescolar , Documentación , Testimonio de Experto/legislación & jurisprudencia , Fracturas Óseas/etiología , Humanos , Lactante , Traumatismo Múltiple/etiología , Examen Físico
13.
Proc Natl Acad Sci U S A ; 105(51): 20055-62, 2008 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-19066226

RESUMEN

MicroRNA (miRNA)-guided cleavage initiates entry of primary transcripts into the transacting siRNA (tasiRNA) biogenesis pathway involving RNA-DEPENDENT RNA POLYMERASE6, DICER-LIKE4, and SUPPRESSOR OF GENE SILENCING3. Arabidopsis thaliana TAS1 and TAS2 families yield tasiRNA that form through miR173-guided initiation-cleavage of primary transcripts and target several transcripts encoding pentatricopeptide repeat proteins and proteins of unknown function. Here, the TAS1c locus was modified to produce synthetic (syn) tasiRNA to target an endogenous transcript encoding PHYTOENE DESATURASE and used to analyze the role of miR173 in routing of transcripts through the tasiRNA pathway. miR173 was unique from other miRNAs in its ability to initiate TAS1c-based syn-tasiRNA formation. A single miR173 target site was sufficient to route non-TAS transcripts into the pathway to yield phased siRNA. We also show that miR173 functions in association with ARGONAUTE 1 (AGO1) during TAS1 and TAS2 tasiRNA formation, and we provide data indicating that the miR173-AGO1 complex possesses unique functionality that many other miRNA-AGO1 complexes lack.


Asunto(s)
Proteínas de Arabidopsis/genética , MicroARNs/fisiología , ARN de Planta/biosíntesis , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Proteínas Argonautas , MicroARNs/metabolismo , ARN Mensajero
14.
PLoS Genet ; 4(2): e14, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18248097

RESUMEN

Correct daily phasing of transcription confers an adaptive advantage to almost all organisms, including higher plants. In this study, we describe a hypothesis-driven network discovery pipeline that identifies biologically relevant patterns in genome-scale data. To demonstrate its utility, we analyzed a comprehensive matrix of time courses interrogating the nuclear transcriptome of Arabidopsis thaliana plants grown under different thermocycles, photocycles, and circadian conditions. We show that 89% of Arabidopsis transcripts cycle in at least one condition and that most genes have peak expression at a particular time of day, which shifts depending on the environment. Thermocycles alone can drive at least half of all transcripts critical for synchronizing internal processes such as cell cycle and protein synthesis. We identified at least three distinct transcription modules controlling phase-specific expression, including a new midnight specific module, PBX/TBX/SBX. We validated the network discovery pipeline, as well as the midnight specific module, by demonstrating that the PBX element was sufficient to drive diurnal and circadian condition-dependent expression. Moreover, we show that the three transcription modules are conserved across Arabidopsis, poplar, and rice. These results confirm the complex interplay between thermocycles, photocycles, and the circadian clock on the daily transcription program, and provide a comprehensive view of the conserved genomic targets for a transcriptional network key to successful adaptation.


Asunto(s)
Arabidopsis/genética , Ritmo Circadiano/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Ritmo Circadiano/fisiología , Proteínas de Unión al ADN/genética , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genes Reporteros , Genoma de Planta , Luciferasas/genética , Modelos Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/genética , Oryza/fisiología , Fotoperiodo , Plantas Modificadas Genéticamente , Populus/genética , Populus/fisiología , Especificidad de la Especie , Temperatura , Factores de Transcripción/genética
15.
Plant Dis ; 95(3): 337-342, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30743500

RESUMEN

Contemporary species identification relies strongly on sequence-based identification, yet resources for identification of many fungal and oomycete pathogens are rare. We developed two web-based, searchable databases for rapid identification of Phytophthora spp. based on sequencing of the internal transcribed spacer (ITS) or the cytochrome oxidase (cox) 1 and 2 spacer region, followed by BLAST searching the databases. Both databases are highly selective. For ITS, only sequences associated with published Phytophthora spp. descriptions or classic Phytophthora phylogenetics references are included. For the cox spacer region, only data obtained by resequencing select isolates reported in published work were included. Novel taxa tentatively named are selectively included in the database and labeled as Phytophthora taxon "X"; as in, for example, P. taxon "asparagi". The database was validated with 700 Phytophthora isolates collected from nursery environments during 2006 to 2009. This resource, found at www.Phytophthora-ID.org , is a robust and validated tool for molecular identification of Phytophthora spp. and is regularly being updated.

16.
Front Cell Dev Biol ; 9: 663032, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33898466

RESUMEN

The ubiquitous use of flame retardant chemicals (FRCs) in the manufacture of many consumer products leads to inevitable environmental releases and human exposures. Studying toxic effects of FRCs as a group is challenging since they widely differ in physicochemical properties. We previously used zebrafish as a model to screen 61 representative FRCs and showed that many induced behavioral and teratogenic effects, with aryl phosphates identified as the most active. In this study, we selected 10 FRCs belonging to diverse physicochemical classes and zebrafish toxicity profiles to identify the gene expression responses following exposures. For each FRC, we executed paired mRNA-micro-RNA (miR) sequencing, which enabled us to study mRNA expression patterns and investigate the role of miRs as posttranscriptional regulators of gene expression. We found widespread disruption of mRNA and miR expression across several FRCs. Neurodevelopment was a key disrupted biological process across multiple FRCs and was corroborated by behavioral deficits. Several mRNAs (e.g., osbpl2a) and miRs (e.g., mir-125b-5p), showed differential expression common to multiple FRCs (10 and 7 respectively). These common miRs were also predicted to regulate a network of differentially expressed genes with diverse functions, including apoptosis, neurodevelopment, lipid regulation and inflammation. Commonly disrupted transcription factors (TFs) such as retinoic acid receptor, retinoid X receptor, and vitamin D regulator were predicted to regulate a wide network of differentially expressed mRNAs across a majority of the FRCs. Many of the differential mRNA-TF and mRNA-miR pairs were predicted to play important roles in development as well as cancer signaling. Specific comparisons between TBBPA and its derivative TBBPA-DBPE showed contrasting gene expression patterns that corroborated with their phenotypic profiles. The newer generation FRCs such as IPP and TCEP produced distinct gene expression changes compared to the legacy FRC BDE-47. Our study is the first to establish a mRNA-miR-TF regulatory network across a large group of structurally diverse FRCs and diverse phenotypic responses. The purpose was to discover common and unique biological targets that will help us understand mechanisms of action for these important chemicals and establish this approach as an important tool for better understanding toxic effects of environmental contaminants.

17.
PLoS Biol ; 5(3): e57, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17298187

RESUMEN

Eukaryotes contain a diversified set of small RNA-guided pathways that control genes, repeated sequences, and viruses at the transcriptional and posttranscriptional levels. Genome-wide profiles and analyses of small RNAs, particularly the large class of 24-nucleotide (nt) short interfering RNAs (siRNAs), were done for wild-type Arabidopsis thaliana and silencing pathway mutants with defects in three RNA-dependent RNA polymerase (RDR) and four Dicer-like (DCL) genes. The profiling involved direct analysis using a multiplexed, parallel-sequencing strategy. Small RNA-generating loci, especially those producing predominantly 24-nt siRNAs, were found to be highly correlated with repetitive elements across the genome. These were found to be largely RDR2- and DCL3-dependent, although alternative DCL activities were detected on a widespread level in the absence of DCL3. In contrast, no evidence for RDR2-alternative activities was detected. Analysis of RDR2- and DCL3-dependent small RNA accumulation patterns in and around protein-coding genes revealed that upstream gene regulatory sequences systematically lack siRNA-generating activities. Further, expression profiling suggested that relatively few genes, proximal to abundant 24-nt siRNAs, are regulated directly by RDR2- and DCL3-dependent silencing. We conclude that the widespread accumulation patterns for RDR2- and DCL3-dependent siRNAs throughout the Arabidopsis genome largely reflect mechanisms to silence highly repeated sequences.


Asunto(s)
Arabidopsis/genética , Perfilación de la Expresión Génica , Genoma de Planta , ARN Interferente Pequeño , Secuencia de Bases , Cartilla de ADN
18.
Nucleic Acids Res ; 36(Database issue): D982-5, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17999994

RESUMEN

Development of the Arabidopsis Small RNA Project (ASRP) Database, which provides information and tools for the analysis of microRNA, endogenous siRNA and other small RNA-related features, has been driven by the introduction of high-throughput sequencing technology. To accommodate the demands of increased data, numerous improvements and updates have been made to ASRP, including new ways to access data, more efficient algorithms for handling data, and increased integration with community-wide resources. New search and visualization tools have also been developed to improve access to small RNA classes and their targets. ASRP is publicly available through a web interface at http://asrp.cgrb.oregonstate.edu/db/.


Asunto(s)
Arabidopsis/genética , Bases de Datos de Ácidos Nucleicos , MicroARNs/química , ARN de Planta/química , ARN Interferente Pequeño/química , Internet , ARN no Traducido/química , Interfaz Usuario-Computador
19.
J Vasc Surg Cases Innov Tech ; 6(4): 641-645, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33163751

RESUMEN

Management of pediatric iatrogenic arterial occlusions can be challenging clinically, leading to chronic complications such as claudication and limb length discrepancy. We report the case of a 6-month-old female patient who had experienced iatrogenic right external iliac and common femoral arterial occlusion. At the age of 8 years, she had developed claudication and a limb length discrepancy of 3.2 cm. She underwent common iliac artery to superficial femoral artery and profunda artery bypass via a branched autologous reverse great saphenous vein using microsurgical techniques for the distal anastomoses. In the present report, we have focused on the musculoskeletal improvements, benefits of microsurgery in pediatric vessels, and maximization of epiphyseal perfusion.

20.
Pathogens ; 9(10)2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33066191

RESUMEN

Indwelling urinary catheters are common in health care settings and can lead to catheter-associated urinary tract infection (CAUTI). Long-term catheterization causes polymicrobial colonization of the catheter and urine, for which the clinical significance is poorly understood. Through prospective assessment of catheter urine colonization, we identified Enterococcus faecalis and Proteus mirabilis as the most prevalent and persistent co-colonizers. Clinical isolates of both species successfully co-colonized in a murine model of CAUTI, and they were observed to co-localize on catheter biofilms during infection. We further demonstrate that P. mirabilis preferentially adheres to E. faecalis during biofilm formation, and that contact-dependent interactions between E. faecalis and P. mirabilis facilitate establishment of a robust biofilm architecture that enhances antimicrobial resistance for both species. E. faecalis may therefore act as a pioneer species on urinary catheters, establishing an ideal surface for persistent colonization by more traditional pathogens such as P. mirabilis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA