Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542082

RESUMEN

Intracellular calcium, as a second messenger, is involved in multilevel cellular regulatory pathways and plays a role (among other processes) in switching between survival and initiation of cell death in neoplastic cells. The development of multidrug resistance (MDR) in neoplastic cells is associated with the ability of cells to escape programmed cell death, in which dysregulation of intracellular calcium may play an important role. Therefore, reliable monitoring of intracellular calcium levels is necessary. However, such a role might be limited by a real obstacle since several fluorescent intracellular calcium indicators are substrates of membrane ABC drug transporters. For example, Fluo-3/AM is a substrate of P-glycoprotein (ABCB1 member of the ABC family), whose overexpression is the most frequent cause of MDR. The overexpression of ABCB1 prevents MDR cell variants from retaining this tracer in the intracellular space where it is supposed to detect calcium. The solution is to use a proper inhibitor of P-gp efflux activity to ensure the retention of the tracer inside the cells. The present study showed that Zosuquidar and Tariquidar (P-gp inhibitors) are suitable for monitoring intracellular calcium, either by flow cytometry or confocal microscopy, in cells overexpressing P-gp.


Asunto(s)
Calcio , Resistencia a Múltiples Medicamentos , Calcio/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Resistencia a Antineoplásicos , Línea Celular Tumoral
2.
Drug Resist Updat ; 61: 100805, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35227933

RESUMEN

Resistance to the hypomethylating agents (HMAs) 5-azacytidine (AZA) and 5-aza-2'-deoxycytidine (DAC) represents a major obstacle in the treatment of elderly patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) which are not suitable for hematopoietic stem cells transplantation. Approximately 50 % of patients do not respond to HMA treatment because of intrinsic (primary) resistance, while others could acquire drug resistance during the repeated cycles of the treatment. To prevent, delay or surmount resistance development, the molecular mechanisms underlying drug resistance must be first identified. This is crucial as no further standard therapeutic opportunities are available for these patients who failed hypomethylating agents-based treatment. The current review provides an updated information about the different mechanisms that may contribute to the development of resistance to HMAs. Despite the similar structure and mechanism of action of HMA, several studies did not report the expected development of cross-resistance. It is clear that in addition to the common modalities of chemoresistance, there must be some specific mechanisms of drug resistance. Changes in transport and metabolism of HMAs are among the most studied mechanisms of resistance. Drug uptake provided by two solute carrier (SLC) families: SLC28 and SLC29 (also known as the concentrative and equilibrative nucleoside transporter families, respectively), could represent one of the mechanisms of cross-resistance. Changes in the metabolism of these drugs are the most likely mechanism responsible for the unique mode of resistance to AZA and DAC. Deoxycytidine kinase and uridine-cytidine kinase due to their necessity for drug activation, each could represent one of the response markers to treatment with DAC and AZA, respectively. Other mechanisms involved in the development of resistance common for both drugs involved: i. increased DNA repair (caused for example by constitutive activation of the ATM/BRCA1 pathway and inhibition of p53-dependent apoptosis); ii. changes in the regulation of apoptosis/disrupted apoptotic pathways (specifically increased levels of the anti-apoptotic protein BCL2) and iii. increased resilience of leukemic stem cells to multiple drugs including HMAs. Despite intense research on the resistance of MDS and AML patients to HMAs, the mechanisms that may reduce the response of these cells to HMAs are not known in detail. We herein highlight the most important directions that future research should take.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Anciano , Azacitidina/farmacología , Azacitidina/uso terapéutico , Decitabina/farmacología , Decitabina/uso terapéutico , Resistencia a Medicamentos , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética
3.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36142752

RESUMEN

The expression of the membrane ABCB1 transporter in neoplastic cells is one of the most common causes of reduced sensitivity to chemotherapy. In our previous study, we investigated the effect of a single culture of ABCB1-negative (S) and ABCB1-positive variants of L1210 cells (R and T) in the presence of sulforaphane (SFN). We demonstrated that SFN induces the onset of autophagy more markedly in S cells than in R or T cells. In the current study, we focused on the effect of the repeated culture of S, R and T cells in SFN-containing media. The repeated cultures increased the onset of autophagy compared to the simple culture, mainly in S cells and to a lesser extent in R and T cells, as indicated by changes in the cellular content of 16 and 18 kDa fragments of LC3B protein or changes in the specific staining of cells with monodansylcadaverine. We conclude that SFN affects ABCB1-negative S cells more than ABCB1-positive R and T cells during repeated culturing. Changes in cell sensitivity to SFN appear to be related to the expression of genes for cell-cycle checkpoints, such as cyclins and cyclin-dependent kinases.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Apoptosis , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Muerte Celular , Línea Celular Tumoral , Quinasas Ciclina-Dependientes , Ciclinas , Isotiocianatos/farmacología , Sulfóxidos/farmacología
4.
Int J Mol Sci ; 22(11)2021 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-34071136

RESUMEN

In this paper, we compared the effects of bortezomib on L1210 (S) cells with its effects on P-glycoprotein (P-gp)-positive variant S cells, which expressed P-gp either after selection with vincristine (R cells) or after transfection with a human gene encoding P-gp (T cells). Bortezomib induced the death-related effects in the S, R, and T cells at concentrations not exceeding 10 nM. Bortezomib-induced cell cycle arrest in the G2/M phase was more pronounced in the S cells than in the R or T cells and was related to the expression levels of cyclins, cyclin-dependent kinases, and their inhibitors. We also observed an increase in the level of polyubiquitinated proteins (via K48-linkage) and a decrease in the gene expression of some deubiquitinases after treatment with bortezomib. Resistant cells expressed higher levels of genes encoding 26S proteasome components and the chaperone HSP90, which is involved in 26S proteasome assembly. After 4 h of preincubation, bortezomib induced a more pronounced depression of proteasome activity in S cells than in R or T cells. However, none of these changes alone or in combination sufficiently suppressed the sensitivity of R or T cells to bortezomib, which remained at a level similar to that of S cells.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antineoplásicos/farmacología , Bortezomib/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Leucemia Linfoide/patología , Proteínas de Neoplasias/metabolismo , Inhibidores de Proteasas/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Animales , Ciclo Celular/efectos de los fármacos , División Celular , Línea Celular Tumoral , Enzimas Desubicuitinizantes , Fluoresceínas/metabolismo , Genes cdc/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Leucemia Linfoide/genética , Leucemia Linfoide/metabolismo , Ratones , Proteínas de Neoplasias/genética , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Mensajero/biosíntesis , ARN Neoplásico/biosíntesis , Proteínas Recombinantes/metabolismo , Transcripción Genética/efectos de los fármacos , Proteínas Ubiquitinadas/metabolismo , Vincristina/farmacología
5.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669837

RESUMEN

We established the following two variants of the MOLM-13 human acute myeloid leukemia (AML) cell line: (i) MOLM-13/DAC cells are resistant to 5-aza-2'-deoxycytidine (DAC), and (ii) MOLM-13/AZA are resistant to 5-azacytidine (AZA). Both cell variants were obtained through a six-month selection/adaptation procedure with a stepwise increase in the concentration of either DAC or AZA. MOLM-13/DAC cells are resistant to DAC, and MOLM-13/AZA cells are resistant to AZA (approximately 50-fold and 20-fold, respectively), but cross-resistance of MOLM-13/DAC to AZA and of MOLM-13/AZA to DAC was not detected. By measuring the cell retention of fluorescein-linked annexin V and propidium iodide, we showed an apoptotic mode of death for MOLM-13 cells after treatment with either DAC or AZA, for MOLM-13/DAC cells after treatment with AZA, and for MOLM-13/AZA cells after treatment with DAC. When cells progressed to apoptosis, via JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine iodide) assay, we detected a reduction in the mitochondrial membrane potential. Furthermore, we characterized promoter methylation levels for some genes encoding proteins regulating apoptosis and the relation of this methylation to the expression of the respective genes. In addition, we focused on determining the expression levels and activity of intrinsic and extrinsic apoptosis pathway proteins.


Asunto(s)
Apoptosis , Metilación de ADN/genética , Resistencia a Antineoplásicos , Transducción de Señal , Apoptosis/efectos de los fármacos , Apoptosis/genética , Azacitidina/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Metilación de ADN/efectos de los fármacos , Decitabina/farmacología , Progresión de la Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Modelos Biológicos , Necrosis , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Regiones Promotoras Genéticas , Transducción de Señal/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo
6.
Molecules ; 25(11)2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32481618

RESUMEN

Four new variants of L1210 cells resistant to endoplasmic reticulum (ER) stressors, tunicamycin (STun), thapsigargin (SThap), bortezomib (SBor), and MG-132 (SMG-132), were developed via an 18-month periodic cultivation in culture medium with a gradual increase in substance concentration. Multidrug resistance was generated for STun (to tunicamycin, bortezomib and MG-132), SThap (to tunicamycin, thapsigargin and MG-132), SBor (to bortezomib and MG-132), and SMG-132 (to bortezomib and MG-132). These cells were compared to the original L1210 cells and another two variants, which expressed P-gp due to induction with vincristine or transfection with the gene encoding P-gp, in terms of the following properties: sensitivity to either vincristine or the ER stressors listed above, proliferative activity, expression of resistance markers and proteins involved in the ER stress response, and proteasome activity. The resistance of the new cell variants to ER stressors was accompanied by a decreased proliferation rate and increased proteasome activity. The most consistent change in protein expression was the elevation of GRP78/BiP at the mRNA and protein levels in all resistant variants of L1210 cells. In conclusion, the mechanisms of resistance to these stressors have certain common features, but there are also specific differences.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Animales , Bortezomib/farmacología , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos , Chaperón BiP del Retículo Endoplásmico , Leupeptinas/farmacología , Ratones , Tapsigargina/farmacología , Tunicamicina/farmacología , Vincristina/farmacología
7.
Molecules ; 25(9)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32365761

RESUMEN

Variants of L1210 leukemia cells-namely, parental P-glycoprotein-negative S cells and R and T cells expressing P-glycoprotein, due to selection with vincristine and transfection with the human p-glycoprotein gene, respectively-were used. The responses of these cell variants to two naturally occurring isothiocyanates-sulforaphane (SFN, from cruciferous vegetables) and allyl isothiocyanate (AITC, from mustard, radish, horseradish and wasabi)-were studied. We obtained conflicting results for the cell death effects induced by isothiocyanates, as measured by i. cell counting, which showed inhibited proliferation, and ii. cell metabolic activity via an MTS assay, which showed an increased MTS signal. These results indicated the hyperactivation of cell metabolism induced by treatment with isothiocyanates. In more detailed study, we found that, depending on the cell variants and the isothiocyanate used in treatment, apoptosis and necrosis (detected by annexin-V cells and propidium iodide staining), as well as autophagy (detected with monodansylcadaverine), were involved in cell death. We also determined the cell levels/expression of Bcl-2 and Bax as representative anti- and pro-apoptotic proteins of the Bcl-2 family, the cell levels/expression of members of the canonical and noncanonical NF-κB pathways, and the cell levels of 16 and 18 kDa fragments of LC3B protein as markers of autophagy.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Isotiocianatos/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Biomarcadores , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Lisosomas/metabolismo , Ratones , Estructura Molecular , Sulfóxidos
8.
Molecules ; 24(11)2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31195716

RESUMEN

We describe the screening of a set of cryptopleurine derivatives, namely thienoquinolizidine derivatives and (epi-)benzo analogs with bioactive phenanthroquinolizidine alkaloids that induce cytotoxic effects in the mouse lymphocytic leukemia cell line L1210. We used three variants of L1210 cells: i) parental cells (S) negative for P-glycoprotein (P-gp) expression; ii) P-glycoprotein positive cells (R), obtained by selection with vincristine; iii) P-glycoprotein positive cells (T), obtained by stable transfection with a human gene encoding P-glycoprotein. We identified the most effective derivative 11 with a median lethal concentration of ≈13 µM in all three L1210 cell variants. The analysis of the apoptosis/necrosis induced by derivative 11 revealed that cell death was the result of apoptosis with late apoptosis characteristics. Derivative 11 did not induce a strong alteration in the proportion of cells in the G1, S or G2/M phase of the cell cycle, but a strong increase in the number of S, R and T cells in the subG1 phase was detected. These findings indicated that we identified the most effective inducer of cell death, derivative 11, and this derivative effectively induced cell death in S, R and T cells at similar inhibitory concentrations independent of P-gp expression.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Apoptosis/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Leucemia/metabolismo , Leucemia/patología , Fenantrolinas/análisis , Fenantrolinas/farmacología , Quinolizinas/análisis , Quinolizinas/farmacología , Caspasa 3/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Activación Enzimática , Humanos , Concentración 50 Inhibidora , Modelos Moleculares , Fenantrolinas/química , Quinolizinas/química , Coloración y Etiquetado , Proteína X Asociada a bcl-2/metabolismo
9.
Gen Physiol Biophys ; 37(3): 353-357, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29938681

RESUMEN

Finding new markers with appropriate prognostic levels for the differential diagnosis of neoplastic diseases represents an important issue for biomedical research. Recently, latrophilin-1 (LPHN1) was reported to be expressed in human monocytic leukemia cell lines and in primary human acute myeloid leukemia (AML) cells. However, this expression was found to be absent in healthy leukocytes. LPHN1 was therefore considered a novel biomarker of human AML. In previous papers, we established two P-gp-positive variants (SKM-1/VCR and MOLM-13/VCR) of AML cell lines derived from parental human AML cells SKM-1 and MOLM-13 by selection with VCR. The present paper addresses the measurement of LPHN1 expression in SKM-1 and MOLM-13 cells and their P-gp-positive variants. Both parental AML lines were positive for LPHN1 expression at the mRNA and protein levels. However, the expression of LPHN1 at both the mRNA and protein levels was reduced in both P-gp-positive SKM-1/VCR and MOLM-13/VCR variants of AML cells. Interestingly, we observed an elevation of the latrophilin-3 transcript in P-gp-positive variants of AML cell lines. The combined results suggest that alterations in latrophilin expression occur in AML cells expressing P-gp.


Asunto(s)
Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica , Leucemia Mieloide Aguda/patología , Receptores Acoplados a Proteínas G/genética , Receptores de Péptidos/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Línea Celular Tumoral , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo
10.
Gen Physiol Biophys ; 37(1): 57-69, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29424352

RESUMEN

DNA condensation, structure and transfection efficiency of complexes formed by gemini surfactants alkane-α,ω-diyl-bis(dodecyldimethylammonium bromide)s (CnGS12, n = 3, 6 and 12 is the number of alkane spacer carbons), dioleoylphosphatidylethanolamine (CnGS12/DOPE = 0.3 mol/mol) and DNA at low surface charge density were investigated through different techniques. Small angle X-ray diffraction showed a condensed lamellar phase with marked dependence of DNA-DNA distance on (+/-) charge ratio. High ionic strength of hydrating medium screens the interaction DNA - CnGS12/DOPE and complexed DNA represented maximally ~ 45-60% of total DNA in the solution as derived from fluorescence and UV-VIS spectroscopy. The in vitro transfection efficiency of CnGS12/DOPE liposomes on mammalian HEK 293 cell line was spacer length-dependent. C12GS12/DOPE/DNA complexes exhibited the best transfection efficiency (~ 18% GFP-expressing cells relative to all viable cells) accompanied by ~ 89% cell viability.


Asunto(s)
ADN/química , ADN/genética , Fosfatidiletanolaminas/química , Compuestos de Amonio Cuaternario/química , Proteínas Recombinantes/metabolismo , Tensoactivos/química , Transfección/métodos , Membrana Celular/química , ADN/administración & dosificación , Difusión , Composición de Medicamentos/métodos , Células HEK293 , Humanos , Liposomas/química , Proteínas Recombinantes/genética
11.
Int J Mol Sci ; 19(7)2018 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-29986516

RESUMEN

JC-1, a cationic fluorescent dye when added to living cells, is known to be localized exclusively in mitochondria, particularly in good physiological conditions characterized by sufficient mitochondrial membrane potential (ΔΨ). The accumulation of JC-1 in these organelles leads to the formation J-aggregates (with a specific red fluorescence emission maximum at 590 nm), which is in addition to the typical green fluorescence of J-monomers (emission maximum of ∼529 nm). The lack of mitochondrial ΔΨ leads to the depression of JC-1 mitochondrial accumulation and a decrease in J-aggregate formation. Therefore, the ratio between the red and green fluorescence of cells loaded with JC-1 is often used for the detection of the mitochondrial membrane potential. However, JC-1 represents a suitable substrate of the multidrug transporter P-glycoprotein (P-gp). Therefore, the depression of the JC-1 content in intracellular space and particularly in the mitochondria to a level that is inefficient for J-aggregate formation could be expected in P-gp-positive cells. In the current paper, we proved this behavior on parental P-gp-negative L1210 (S) cells and their P-gp-positive variants obtained by either selection with vincristine (R) or transfection with the human gene encoding P-gp (T). P-glycoprotein inhibitors cyclosporine A and verapamil fail to restore JC-1 loading of the R and T cells to an extent similar to that observed in S cells. In contrast, the noncompetitive high affinity P-gp inhibitor tariquidar fully restored JC-1 accumulation and the presence of the typical red fluorescence of J-aggregates. In the presence of tariquidar, measurement of the JC-1 fluorescence revealed similar levels of mitochondrial membrane potential in P-gp-negative (S) and P-gp-positive cells (R and T).


Asunto(s)
Bencimidazoles/metabolismo , Carbocianinas/metabolismo , Colorantes Fluorescentes/metabolismo , Mitocondrias/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Línea Celular , Ciclosporina/farmacología , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Quinolinas/farmacología , Verapamilo/farmacología
12.
Molecules ; 23(2)2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29415493

RESUMEN

Multidrug resistance (MDR) is a phenotype of cancer cells with reduced sensitivity to a wide range of unrelated drugs. P-glycoprotein (P-gp)-a drug efflux pump (ABCB1 member of the ABC transporter gene family)-is frequently observed to be a molecular cause of MDR. The drug-efflux activity of P-gp is considered as the underlying mechanism of drug resistance against P-gp substrates and results in failure of cancer chemotherapy. Several pathological impulses such as shortages of oxygen and glucose supply, alterations of calcium storage mechanisms and/or processes of protein N-glycosylation in the endoplasmic reticulum (ER) leads to ER stress (ERS), characterized by elevation of unfolded protein cell content and activation of the unfolded protein response (UPR). UPR is responsible for modification of protein folding pathways, removal of misfolded proteins by ER associated protein degradation (ERAD) and inhibition of proteosynthesis. However, sustained ERS may result in UPR-mediated cell death. Neoplastic cells could escape from the death pathway induced by ERS by switching UPR into pro survival mechanisms instead of apoptosis. Here, we aimed to present state of the art information about consequences of P-gp expression on mechanisms associated with ERS development and regulation of the ERAD system, particularly focused on advances in ERS-associated therapy of drug resistant malignancies.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Múltiples Medicamentos/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Animales , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Glicosilación , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Transducción de Señal , Respuesta de Proteína Desplegada
13.
Molecules ; 23(5)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29723984

RESUMEN

The acceleration of drug efflux activity realized by plasma membrane transporters in neoplastic cells, particularly by P-glycoprotein (P-gp, ABCB1 member of the ABC transporter family), represents a frequently observed molecular cause of multidrug resistance (MDR). This multiple resistance represents a real obstacle in the effective chemotherapy of neoplastic diseases. Therefore, identifying cytotoxic substances that are also effective in P-gp overexpressing cells may be useful for the rational design of substances for the treatment of malignancies with developed MDR. Here, we showed that triorganotin derivatives­tributyltin-chloride (TBT-Cl), tributyltin-bromide (TBT-Br), tributyltin-iodide (TBT-I) and tributyltin-isothiocyanate (TBT-NCS) or triphenyltin-chloride (TPT-Cl) and triphenyltin-isothiocyanate (TPT-NCS)­could induce the death of L1210 mice leukemia cells at a submicromolar concentration independently of P-gp overexpression. The median lethal concentration obtained for triorganotin derivatives did not exceed 0.5 µM in the induction of cell death of either P-gp negative or P-gp positive L1210 cells. Apoptosis related to regulatory pathway of Bcl-2 family proteins seems to be the predominant mode of cell death in either P-gp negative or P-gp positive L1210 cells. TBT-Cl and TBT-Br were more efficient with L1210 cells overexpressing P-gp than with their counterpart P-gp negative cells. In contrast, TBT-I and TPT-NCS induced a more pronounced cell death effect on P-gp negative cells than on P-gp positive cells. Triorganotin derivatives did not affect P-gp efflux in native cells measured by calcein retention within the cells. Taken together, we assumed that triorganotin derivatives represent substances suitable for suppressing the viability of P-gp positive malignant cells.


Asunto(s)
Citotoxinas , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Leucemia/tratamiento farmacológico , Proteínas de Neoplasias/biosíntesis , Subfamilia B de Transportador de Casetes de Unión a ATP/biosíntesis , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Línea Celular Tumoral , Citotoxinas/síntesis química , Citotoxinas/química , Citotoxinas/farmacocinética , Citotoxinas/farmacología , Humanos , Leucemia/genética , Leucemia/metabolismo , Proteínas de Neoplasias/genética
14.
Molecules ; 22(7)2017 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-28671633

RESUMEN

Overexpression of P-glycoprotein (P-gp, drug transporter) in neoplastic cells is the most frequently observed molecular cause of multidrug resistance. Here, we show that the overexpression of P-gp in L1210 cells leads to resistance to tunicamycin and benzyl 2-acetamido-2-deoxy-α-d-galactopyranoside (GalNAc-α-O-benzyl). Tunicamycin induces both glycosylation depression and ubiquitination improvement of P-gp. However, the latter is not associated with large increases in molecular mass as evidence for polyubiquitination. Therefore, P-gp continues in maturation to an active membrane efflux pump rather than proteasomal degradation. P-gp-positive L1210 cells contain a higher quantity of ubiquitin associated with cell surface proteins than their P-gp-negative counterparts. Thus, P-gp-positive cells use ubiquitin signaling for correct protein folding to a higher extent than P-gp-negative cells. Elevation of protein ubiquitination after tunicamycin treatment in these cells leads to protein folding rather than protein degradation, resulting at least in the partial lack of cell sensitivity to tunicamycin in L1210 cells after P-gp expression. In contrast to tunicamycin, to understand why P-gp-positive cells are resistant to GalNAc-α-O-benzyl, further research is needed.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Resistencia a Antineoplásicos , Leucemia Linfoide/metabolismo , Proteínas de la Membrana/química , Regulación hacia Arriba , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Acetilgalactosamina/análogos & derivados , Acetilgalactosamina/farmacología , Animales , Compuestos de Bencilo/farmacología , Línea Celular Tumoral , Glicosilación/efectos de los fármacos , Leucemia Linfoide/genética , Ratones , Mucinas/química , Pliegue de Proteína , Tunicamicina/farmacología , Ubiquitinación
15.
Gen Physiol Biophys ; 35(4): 497-510, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27763330

RESUMEN

In P-gp-positive cell variants obtained from L1210 cells either by selection with vincristine (L1210/R) or by transfection with the human gene encoding P-gp (L1210/T), we have previously described cross-resistance to tunicamycin (TNM), a protein N-glycosylation inhibitor. Here we studied whether this cross-resistance also underlies P-gp-positive variants of human acute myeloid leukemia cells (AML) derived from SKM-1 and MOLM-13 cells (SKM-1/VCR, SKM-1/LEN, MOLM-13/VCR) by selection with vincristine (VCR) and lenalidomide (LEN). While SKM-1/LEN cells were P-gp positive, no P-gp was detected in MOLM-13/LEN cells. P-gp-positive cells could be repeatedly passaged in medium containing TNM. In contrast, more than 90% of P-gp-negative cells were entering and progressing through cell death mechanisms after the third passage in medium containing TNM. Combined apoptosis/necrosis cell death was detected in L1210 cells after exposure to TNM. Passaging of P-gp-negative AML cells in medium containing TNM induced preferentially apoptosis. Damage to P-gp-negative cells induced with TNM was associated with arrest in the G1 phase of the cell cycle. P-gp-positive leukemia cells differed from P-gp-negative cells in the composition of plasma membrane glycoproteins, which we monitored with the aid of different lectins. The application of TNM to cells induced additional changes in membrane-linked glycosides.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Apoptosis/efectos de los fármacos , Resistencia a Antineoplásicos , Leucemia/tratamiento farmacológico , Tunicamicina/administración & dosificación , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Glicosilación/efectos de los fármacos , Humanos , Leucemia/patología , Resultado del Tratamiento
16.
Gen Physiol Biophys ; 34(4): 399-406, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26001289

RESUMEN

A specific type of myelodysplastic syndrome (MDS) is associated with isolated deletion on the long arm of chromosome 5, i.e., 5q-syndrome (del(5q)). The treatment approaches for MDS del(5q) include the immunomodulating drug lenalidomide (LEN). Thirteen MDS del(5q) patients were included in this study. We found elevated activities of lactate dehydrogenase (LDH) and matrix metalloproteinase 9 (MMP-9) in the blood plasma of MDS del(5q) patients as compared with healthy controls. This was stabilized to control values after LEN treatment. Similar behavior we registered also for the thioredoxin and calnexin contents in BP. Peripheral blood mononuclear cells (PBMC) from patients with MDS del(5q) prior to and after treatment with LEN did not exhibit any detectable amount of P-glycoprotein (P-gp) gene transcript. However, we detected a measurable amount of multidrug resistance associated protein 1 (MRP1) mRNA in PBMCs from three patients prior to LEN treatment and in one patient during LEN treatment but it was not present prior to treatment. These data indicated on usefulness of applied protein markers estimation for monitoring of MDS del(5q) patient treatment effectiveness by LEN. Expression of MRP1 seems to be independent on LEN treatment and reflects probably the molecular variability in the ethiopathogenesis of MDS del(5q).


Asunto(s)
Anemia Macrocítica/sangre , Anemia Macrocítica/tratamiento farmacológico , Proteínas Sanguíneas/análisis , Síndromes Mielodisplásicos/sangre , Síndromes Mielodisplásicos/tratamiento farmacológico , Talidomida/análogos & derivados , Adulto , Anciano , Biomarcadores/sangre , Deleción Cromosómica , Cromosomas Humanos Par 5 , Femenino , Humanos , Factores Inmunológicos , Lenalidomida , Masculino , Persona de Mediana Edad , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/sangre , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Talidomida/uso terapéutico , Resultado del Tratamiento
17.
Gen Physiol Biophys ; 33(4): 425-31, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24968412

RESUMEN

Nestin is a class 6 filament protein typically expressed in neural stem/progenitor cells. However, nestin expression has been observed in other tissues during mammalian embryogenesis. In human neural stem/progenitor cells, coexpression of nestin and P-glycoprotein (P-gp, ABCB1 member of the ABC transporter family) was detected. P-gp-mediated drug efflux is the most common molecular cause of multidrug resistance in neoplastic cells. Nestin expression has also been detected in various human solid tumours as well as in the corresponding established cell lines. Interestingly, expression of nestin in different leukemia cells has been recently reported. Here, we show that expression of P-gp is associated with the simultaneous expression of nestin in acute myeloid leukemia cell lines (MOLM-13 and SKM-1) under the selective pressure of vincristine, a substance that may induce P-gp expression in neoplastic cells.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Nestina/genética , Vincristina/farmacología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética/efectos de los fármacos
18.
Cancers (Basel) ; 15(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37297025

RESUMEN

Three AML cell variants (M/A, M/A* from MOLM-13 and S/A from SKM-1) were established for resistance by the same protocol using 5-azacytidine (AZA) as a selection agent. These AZA-resistant variants differ in their responses to other cytosine nucleoside analogs, including 5-aza-2'-deoxycytidine (DAC), as well as in some molecular features. Differences in global DNA methylation, protein levels of DNA methyltransferases, and phosphorylation of histone H2AX were observed in response to AZA and DAC treatment in these cell variants. This could be due to changes in the expression of uridine-cytidine kinases 1 and 2 (UCK1 and UCK2) demonstrated in our cell variants. In the M/A variant that retained sensitivity to DAC, we detected a homozygous point mutation in UCK2 resulting in an amino acid substitution (L220R) that is likely responsible for AZA resistance. Cells administered AZA treatment can switch to de novo synthesis of pyrimidine nucleotides, which could be blocked by inhibition of dihydroorotate dehydrogenase by teriflunomide (TFN). This is shown by the synergistic effect of AZA and TFN in those variants that were cross-resistant to DAC and did not have a mutation in UCK2.

19.
Int J Mol Sci ; 13(1): 369-82, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22312258

RESUMEN

The drug efflux activity of P-glycoprotein (P-gp, a product of the mdr1 gene, ABCB1 member of ABC transporter family) represents a mechanism by which tumor cells escape death induced by chemotherapeutics. In this study, we investigated the mechanisms involved in the effects of pentoxifylline (PTX) on P-gp-mediated multidrug resistance (MDR) in mouse leukemia L1210/VCR cells. Parental sensitive mouse leukemia cells L1210, and multidrug-resistant cells, L1210/VCR, which are characterized by the overexpression of P-gp, were used as experimental models. The cells were exposed to 100 µmol/L PTX in the presence or absence of 1.2 µmol/L vincristine (VCR). Western blot analysis indicated a downregulation of P-gp protein expression when multidrug-resistant L1210/VCR cells were exposed to PTX. The effects of PTX on the sensitization of L1210/VCR cells to VCR correlate with the stimulation of apoptosis detected by Annexin V/propidium iodide apoptosis necrosis kit and proteolytic activation of both caspase-3 and caspase-9 monitored by Western blot analysis. Higher release of matrix metalloproteinases (MMPs), especially MMP-2, which could be attenuated by PTX, was found in L1210/VCR than in L1210 cells by gelatin zymography in electrophoretic gel. Exposure of resistant cells to PTX increased the content of phosphorylated Akt kinase. In contrast, the presence of VCR eliminated the effects of PTX on Akt kinase phosphorylation. Taken together, we conclude that PTX induces the sensitization of multidrug-resistant cells to VCR via downregulation of P-gp, stimulation of apoptosis and reduction of MMPs released from drug-resistant L1210/VCR cells. These facts bring new insights into the mechanisms of PTX action on cancer cells.


Asunto(s)
Antineoplásicos/toxicidad , Resistencia a Antineoplásicos/efectos de los fármacos , Pentoxifilina/toxicidad , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Metaloproteinasas de la Matriz/metabolismo , Ratones , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Vincristina/toxicidad
20.
Int J Mol Sci ; 13(11): 15177-92, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23203118

RESUMEN

P-glycoprotein (P-gp) overexpression is the most frequently observed cause of multidrug resistance in neoplastic cells. In our experiments, P-gp was expressed in L1210 mice leukemia cells (S cells) by selection with vincristine (R cells) or transfection with the gene encoding human P-gp (T cells). Remodeling of cell surface sugars is associated with P-gp expression in L1210 cells as a secondary cellular response. In this study, we monitored the alteration of cell surface saccharides by Sambucus nigra agglutinin (SNA), wheat germ agglutinin (WGA) and Maackia amurensis agglutinin (MAA). Sialic acid is predominantly linked to the surface of S, R and T cells via α-2,6 branched sugars that tightly bind SNA. The presence of sialic acid linked to the cell surface via α-2,3 branched sugars was negligible, and the binding of MAA (recognizing this branch) was much less pronounced than SNA. WGA induced greater cell death than SNA, which was bound to the cell surface and agglutinated all three L1210 cell-variants more effectively than WGA. Thus, the ability of lectins to induce cell death did not correlate with their binding efficiency and agglutination potency. Compared to S cells, P-gp positive R and T cells contain a higher amount of N-acetyl-glucosamine on their cell surface, which is associated with improved WGA binding. Both P-gp positive variants of L1210 cells are strongly resistant to vincristine as P-gp prototypical drug. This resistance could not be altered by liberalization of terminal sialyl residues from the cell surface by sialidase.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Membrana Celular/metabolismo , Expresión Génica , Glicómica , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Aglutinación , Aglutininas/metabolismo , Animales , Muerte Celular , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos , Fluoresceína-5-Isotiocianato/metabolismo , Glicosilación , Humanos , Ligandos , Ratones , Neuraminidasa/química , Neuraminidasa/metabolismo , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA