Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Environ ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39169830

RESUMEN

Proanthocyanidins (PAs) is a kind of polyphenols widely distributed in plants, and their astringent properties can protect plants from herbivores and regulate fruit taste. There is a great difference in PA composition between astringent (A)-type and nonastringent (NA)-type persimmon. Here, we studied the potential of DkDTX1/MATE1 in regulating PAs composition through its preferred transport in persimmon fruit. The results of fluorescence microscope showed that the DkDTX1/MATE1 green fluorescence overlapped with the blue light emitted by PA. Overexpression of DkDTX1/MATE1 in persimmon leaves not only significantly increase the concentrations of PA, but also upregulated the expression of PA biosynthesis pathway genes. Further overexpression of DkDTX1/MATE1 in persimmon fruit discs and stable genetic transformation of DkDTX1/MATE1 also led to PA concentrations increased. Molecular docking and transporter assays showed that DkDTX1/MATE1 preferentially transported catechin, epicatechin gallate and epigallocatechin gallate. DkDTX1/MATE1 mainly bound to the PA precursors via serine at position 68. Our findings indicate that DkDTX1/MATE1 play a role in the accumulation of PAs in early stage of fruit development and affects the astringency of persimmon through preferential transport PA precursors, which provided a theoretical basis for the future use of metabolic engineering to regulate the composition of PAs in persimmon.

2.
J Integr Plant Biol ; 65(10): 2304-2319, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37526209

RESUMEN

Proanthocyanidins (PAs) are specialized metabolites that influence persimmon fruit quality. Normal astringent (A)-type and non-astringent (NA)-type mutants show significant variation in PA accumulation, but the influencing mechanism remains unclear. In this study, among the six identified DTXs/MATEs proteins associated with PA accumulation, we observed that allelic variation and preferential transport by DkDTX5/MATE5 induced variation in PA accumulation for A-type and NA-type fruit. The expression pattern of DkDTX5/MATE5 was correlated with PA accumulation in NA-type fruit. Upregulation and downregulation of DkDTX5/MATE5 promoted and inhibited PA accumulation, respectively, in the NA-type fruit. Interestingly, transporter assays of Xenopus laevis oocytes indicated that DkDTX5/MATE5 preferentially transported the PA precursors catechin, epicatechin, and epicatechin gallate, resulting in their increased ratios relative to the total PAs, which was the main source of variation in PA accumulation between the A-type and NA-type. The allele lacking Ser-84 in DkDTX5/MATE5 was identified as a dominantly expressed gene in the A-type and lost its transport function. Site-directed mutagenesis revealed that DkDTX5/MATE5 binds to PA precursors via Ser-84. These findings clarify the association between the transporter function of DkDTX5/MATE5 and PA variation, and can contribute to the breeding of new cultivars with improved fruit quality.


Asunto(s)
Diospyros , Proantocianidinas , Diospyros/genética , Diospyros/metabolismo , Astringentes/metabolismo , Frutas/genética , Frutas/metabolismo , Fitomejoramiento , Proantocianidinas/metabolismo
3.
Polymers (Basel) ; 13(23)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34883723

RESUMEN

This study prepared 4,4-diaminodiphenylmethane (DDM)-functionalized graphene oxide (GO)@silica dioxide (SiO2) nano-composites through amidation reaction and low-temperature precipitation. The resulting modified GO, that was DDM-GO@SiO2. The study found that DDM-GO@SiO2 showed good dispersion and compatibility with thermoplastic polyurethane (TPU) substrates. Compared with pure TPU, the tensile strength of the TPU composites increased by 41% to 94.6 MPa at only 0.5 wt% DDM-GO@SiO2. In addition, even when a small amount of DDM-GO@SiO2 was added, the UV absorption of TPU composites increased significantly, TPU composites can achieve a UV shielding efficiency of 95.21% in the UV-A region. These results show that this type of material holds great promise for the preparation of functional coatings and film materials with high strength and weather resistance.

4.
PLoS Negl Trop Dis ; 14(8): e0008660, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32866199

RESUMEN

Aedes mosquitoes can transmit dengue and several other severe vector-borne viral diseases, thereby influencing millions of people worldwide. Insects primarily control and clear the viral infections via their innate immune systems. Mitogen-Activated Protein Kinases (MAPKs) and antimicrobial peptides (AMPs) are both evolutionarily conserved components of the innate immune systems. In this study, we investigated the role of MAPKs in Aedes mosquitoes following DENV infection by using genetic and pharmacological approaches. We demonstrated that knockdown of ERK, but not of JNK or p38, significantly enhances the viral replication in Aedes mosquito cells. The Ras/ERK signaling is activated in both the cells and midguts of Aedes mosquitoes following DENV infection, and thus plays a role in restricting the viral infection, as both genetic and pharmacological activation of the Ras/ERK pathway significantly decreases the viral titers. In contrast, inhibition of the Ras/ERK pathway enhances DENV infection. In addition, we identified a signaling crosstalk between the Ras/ERK pathway and DENV-induced AMPs in which defensin C participates in restricting DENV infection in Aedes mosquitoes. Our results reveal that the Ras/ERK signaling pathway couples AMPs to mediate the resistance of Aedes mosquitoes to DENV infection, which provides a new insight into understanding the crosstalk between MAPKs and AMPs in the innate immunity of mosquito vectors during the viral infection.


Asunto(s)
Aedes/virología , Péptidos Catiónicos Antimicrobianos/farmacología , Virus del Dengue/inmunología , Quinasas de Proteína Quinasa Activadas por Mitógenos/farmacología , Mosquitos Vectores/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Antiinfecciosos/farmacología , Línea Celular , Sistema Digestivo/virología , Femenino , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Inmunidad Innata , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Mosquitos Vectores/virología , Carga Viral , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA