Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Molecules ; 28(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37241917

RESUMEN

Aqueous zinc-ion batteries (AZIBs) show enormous potential as a large-scale energy storage technique. However, the growth of Zn dendrites and serious side reactions occurring at the Zn anode hinder the practical application of AZIBs. For the first time, we reported a fluorine-containing surfactant, i.e., potassium perfluoro-1-butanesulfonate (PPFBS), as an additive to the 2 M ZnSO4 electrolyte. Benefitting from its hydrophilic sulfonate anion and hydrophobic long fluorocarbon chain, PPFBS can promote the uniform distribution of Zn2+ flux at the anode/electrolyte interface, allowing the Zn/Zn cell to cycle for 2200 h. Furthermore, PPFBS could inhibit side reactions due to the existence of the perfluorobutyl sulfonate (C4F9SO3-) adsorption layer and the presence of C4F9SO3- in the solvation structure of Zn2+. The former can reduce the amount of H2O molecules and SO42- in contact with the Zn anode and C4F9SO3- entering the Zn2+-solvation structure by replacing SO42-. The Zn/Cu cell exhibits a superior average CE of 99.47% over 500 cycles. When coupled with the V2O5 cathode, the full cell shows impressive cycle stability. This work provides a simple, effective, and economical solution to the common issues of the Zn anode.

2.
J Cell Mol Med ; 24(19): 11397-11408, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32827242

RESUMEN

Accumulating evidence suggests that circular RNAs have the abilities to regulate gene expression during the progression of sepsis-associated acute kidney injury. Circular RNA VMA21 (circVMA21), a recent identified circular RNA, could reduce apoptosis to alleviate intervertebral disc degeneration in rats and protect WI-38 cells from lipopolysaccharide-induced injury. However, the role of circVMA21 in sepsis-associated acute kidney injury (sepsis-associated AKI) is unknown. In this study, we first demonstrated that circVMA21 alleviated sepsis-associated AKI by reducing apoptosis and inflammation in rats and HK-2 cells. Additionally, to explore the molecule mechanism underlying the amelioration, after the bioinformatics analysis, we confirmed that miR-9-3p directly bound to circVMA21 by luciferase and RNA immunoprecipitation assay, and the effector protein of miR-9-3p was SMG1. Furthermore, the oxidative stress caused by sepsis-associated AKI was down-regulated by circVMA21. In conclusion, circVMA21 plays an important role in the regulating sepsis-associated AKI via adjusting miR-9-39/SMG1/inflammation axis and oxidative stress.


Asunto(s)
Lesión Renal Aguda/complicaciones , Inflamación/genética , MicroARNs/genética , Estrés Oxidativo/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Circular/metabolismo , Sepsis/complicaciones , Transducción de Señal , Lesión Renal Aguda/genética , Animales , Apoptosis , Secuencia de Bases , Ciego/patología , Línea Celular , Modelos Animales de Enfermedad , Humanos , Ligadura , Lipopolisacáridos , MicroARNs/metabolismo , Punciones , ARN Circular/genética , Ratas Wistar , Sepsis/genética
3.
Angew Chem Int Ed Engl ; 58(46): 16474-16479, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31449348

RESUMEN

A key challenge for potassium-ion batteries is to explore low-cost electrode materials that allow fast and reversible insertion of large-ionic-size K+ . Here, we report an inorganic-open-framework anode (KTiOPO4 ), which achieves a reversible capacity of up to 102 mAh g-1 (307 mAh cm-3 ), flat voltage plateaus at a safe average potential of 0.82 V (vs. K/K+ ), a long lifespan of over 200 cycles, and K+ -transport kinetics ≈10 times faster than those of Na-superionic conductors. Combined experimental analysis and first-principles calculations reveal a charge storage mechanism involving biphasic and solid solution reactions and a cell volume change (9.5 %) even smaller than that for Li+ -insertion into graphite (≈10 %). KTiOPO4 exhibits quasi-3D lattice expansion on K+ intercalation, enabling the disintegration of small lattice strain and thus high structural stability. The inorganic open-frameworks may open a new avenue for exploring low-cost, stable and fast-kinetic battery chemistry.

4.
Nano Lett ; 16(9): 5875-82, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27518908

RESUMEN

Bismuth is a lithium-ion battery anode material that can operate at an equilibrium potential higher than graphite and provide a capacity twice as high as that of Li4Ti5O12, making it intrinsically free from lithium plating that may cause catastrophic battery failure. However, the potential of bismuth is hampered by its inferior cyclability (limited to tens of cycles). Here, we propose an "ion conductive solid-state matrix" approach to address this issue. By homogeneously confining bismuth nanoparticles in a solid-state γ-Li3PO4 matrix that is electrochemically formed in situ, the resulting composite anode exhibits a reversible capacity of 280 mA hours per gram (mA h/g) at a rate of 100 mA/g and a record cyclability among bismuth-based anodes up to 500 cycles with a capacity decay rate of merely 0.071% per cycle. We further show that full-cell batteries fabricated from this composite anode and commercial LiFePO4 cathode deliver a stable cell voltage of ∼2.5 V and remarkable energy efficiency up to 86.3%, on par with practical batteries (80-90%). This work paves a way for harnessing bismuth-based battery chemistry for the design of high capacity, safer lithium-ion batteries to meet demanding applications such as electric vehicles.

5.
Nano Lett ; 15(1): 703-8, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25513731

RESUMEN

Silicon can store Li(+) at a capacity 10 times that of graphite anodes. However, to harness this remarkable potential for electrical energy storage, one has to address the multifaceted challenge of volume change inherent to high capacity electrode materials. Here, we show that, solely by chemical tailoring of Si-carbon interface with atomic oxygen, the cycle life of Si/carbon matrix-composite electrodes can be substantially improved, by 300%, even at high mass loadings. The interface tailored electrodes simultaneously attain high areal capacity (3.86 mAh/cm(2)), high specific capacity (922 mAh/g based on the mass of the entire electrode), and excellent cyclability (80% retention of capacity after 160 cycles), which are among the highest reported. Even at a high rate of 1C, the areal capacity approaches 1.61 mAh/cm(2) at the 500th cycle. This remarkable electrochemical performance is directly correlated with significantly improved structural and electrical interconnections throughout the entire electrode due to chemical tailoring of the Si-carbon interface with atomic oxygen. Our results demonstrate that interfacial bonding, a new dimension that has yet to be explored, can play an unexpectedly important role in addressing the multifaceted challenge of Si anodes.

6.
Small ; 11(1): 96-102, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25180916

RESUMEN

Covalently functionalized, semiconducting double-walled carbon nanotubes exhibit remarkable properties and can outperform their single-walled carbon nanotube counterparts. In order to harness their potential for electronic applications, metallic double-walled carbon nanotubes must be separated from the semiconductors. However, the inner wall is inaccessible to current separation techniques which rely on the surface properties. Here, the first approach to address this challenge through electrical breakdown of metallic double-walled carbon nanotubes, both inner and outer walls, within networks of mixed electronic types is described. The intact semiconductors demonstrate a ∼62% retention of the ON-state conductance in thin film transistors in response to covalent functionalization. The selective elimination of the metallic pathways improves the ON/OFF ratio, by more than 360 times, to as high as 40 700, while simultaneously retaining high ON-state conductance.


Asunto(s)
Metales/química , Nanotubos de Carbono/química , Benceno/química , Electricidad , Factores de Tiempo , Transistores Electrónicos
7.
Langmuir ; 31(25): 6948-55, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26020583

RESUMEN

Experiments probing the properties of individual carbon nanotubes (CNTs) and those measuring bulk composites show vastly different results. One major issue limiting the results is that the procedures required to separate and test CNTs introduce contamination that changes the properties of the CNT. These contamination residues often come from the resist used in lithographic processing and the surfactant used to suspend and deposit the CNTs, commonly sodium dodecyl sulfate (SDS). Here we present ammonium laurate (AL), a surfactant that has previously not been used for this application, which differs from SDS only by substitution of ionic constituents but shows vastly cleaner depositions. In addition, we show that compared to SDS, AL-suspended CNTs have greater shelf stability and more selective dispersion. These results are verified using transmission electron microscopy, atomic force microscopy, ζ-potential measurements, and Raman and absorption optical spectroscopy. This surfactant is simple to prepare, and the nanotube solutions require minimal sonication and centrifugation in order to outperform SDS.

8.
J Am Chem Soc ; 135(6): 2306-12, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23327103

RESUMEN

Atom-thick materials such as single-walled carbon nanotubes (SWCNTs) and graphene exhibit ultrahigh sensitivity to chemical perturbation partly because all of the constituent atoms are surface atoms. However, low selectivity due to nonspecific binding on the graphitic surface is a challenging issue to many applications including chemical sensing. Here, we demonstrated simultaneous attainment of high sensitivity and selectivity in thin-film field effect transistors (TFTs) based on outer-wall selectively functionalized double-walled carbon nanotubes (DWCNTs). With carboxylic acid functionalized DWCNT TFTs, we obtained excellent gate modulation (on/off ratio as high as 4000) with relatively high ON currents at a CNT areal density as low as 35 ng/cm(2). The devices displayed an NH(3) sensitivity of 60 nM (or ~1 ppb), which is comparable to small molecule aqueous solution detection using state-of-the-art SWCNT TFT sensors while concomitantly achieving 6000 times higher chemical selectivity toward a variety of amine-containing analyte molecules over that of other small molecules. These results highlight the potential of using covalently functionalized double-walled carbon nanotubes for simultaneous ultrahigh selective and sensitive detection of chemicals and illustrate some of the structural advantages of this double-wall materials strategy to nanoelectronics.


Asunto(s)
Amoníaco/análisis , Electrónica , Nanotubos de Carbono/química , Ácidos Carboxílicos/química , Grafito/química , Propiedades de Superficie
9.
Nat Commun ; 14(1): 3639, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37336903

RESUMEN

Stable lithium metal negative electrodes are desirable to produce high-energy batteries. However, when practical testing conditions are applied, lithium metal is unstable during battery cycling. Here, we propose poly(2-hydroxyethyl acrylate-co-sodium benzenesulfonate) (PHS) as negative electrode protective layer. The PHS contains soft poly (2-hydroxyethyl acrylate) and poly(sodium p-styrene sulfonate), which improve electrode flexibility, connection with the Cu current collector and transport of Li ions. Transmission electron cryomicroscopy measurements reveal that PHS induces the formation of a solid electrolyte interphase with a fluorinated rigid and crystalline internal structure. Furthermore, theoretical calculations suggest that the -SO3- group of poly(sodium p-styrene sulfonate) promotes Li-ion motion towards interchain migration through cation-dipole interaction, thus, enabling uniform Li-ion diffusion. Electrochemical measurements of Li | |PHS-coated-Cu coin cells demonstrate an average Coulombic efficiency of 99.46% at 1 mA/cm2, 6 mAh/cm2 and 25 °C. Moreover, when the PHS-coated Li metal negative electrode is paired with a high-areal-capacity LiNi0.83Co0.11Mn0.06O2-based positive electrode in multi-layer pouch cell configuration, the battery delivers an initial capacity of 6.86 Ah (corresponding to a specific energy of 489.7 Wh/kg) and, a 91.1% discharge capacity retention after 150 cycles at 2.5 mA/cm2, 25 °C and 172 kPa.

10.
J Am Chem Soc ; 133(14): 5561-72, 2011 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-21428302

RESUMEN

Four new potassium vanadyl iodates based on lone-pair-containing IO(3) and second-order Jahn-Teller distorted VO(5) or VO(6) asymmetric units, namely, α-KVO(2)(IO(3))(2)(H(2)O) (Pbca), ß-KVO(2)(IO(3))(2)(H(2)O) (P2(1)2(1)2(1)), K(4)[(VO)(IO(3))(5)](2)(HIO(3))(H(2)O)(2)·H(2)O (P1), and K(VO)(2)O(2)(IO(3))(3) (Ima2) have been successfully synthesized by hydrothermal reactions. α-KVO(2)(IO(3))(2)(H(2)O) and ß-KVO(2)(IO(3))(2)(H(2)O) exhibit two different types of 1D [VO(2)(IO(3))(2)](-) anionic chains. Neighboring VO(6) octahedra in the α-phase are corner-sharing into a 1D chain with the IO(3) groups attached on both sides of the chain in a uni- or bidentate bridging fashion, whereas those of VO(5) polyhedra in the ß-phase are bridged by IO(3) groups into a right-handed helical chain with remaining IO(3) groups being grafted unidentately on both sides of the helical chain. The structure of K(4)[(VO)(IO(3))(5)](2)(HIO(3))(H(2)O)(2)·H(2)O contains novel isolated [(VO)(IO(3))(5)](2-) units composed of one VO(6) octahedron linked to five IO(3) groups and one terminal O(2-) anion. The structure of K(VO)(2)O(2)(IO(3))(3) exhibits a 1D [(VO)(2)O(2)(IO(3))(3)](-) chain in which neighboring VO(6) octahedra are interconnected by both oxo and bridging iodate anions. Most interestingly, three of four compounds are noncentrosymmetric (NCS), and K(VO)(2)O(2)(IO(3))(3) displays a very strong second-harmonic generation response of about 3.6 × KTP, which is phase matchable. It also has high thermal stability, a wide transparent region and moderate hardness as well as an excellent growth habit. Thermal analyses and optical and ferroelectric properties as well as theoretical calculations have also been performed.

11.
Inorg Chem ; 49(24): 11627-36, 2010 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-21090773

RESUMEN

Six new novel alkaline-earth metal vanadium(V) or vanadium(IV) selenites and tellurites, namely, Sr(2)(VO)(3)(SeO(3))(5), Sr(V(2)O(5))(TeO(3)), Sr(2)(V(2)O(5))(2)(TeO(3))(2)(H(2)O), Ba(3)(VO(2))(2)(SeO(3))(4), Ba(2)(VO(3))Te(4)O(9)(OH), and Ba(2)V(2)O(5)(Te(2)O(6)), have been prepared and structurally characterized by single crystal X-ray diffraction analyses. These compounds exhibit six different anionic structures ranging from zero-dimensional (0D) cluster to three-dimensional (3D) network. Sr(2)(VO)(3)(SeO(3))(5) features a 3D anionic framework composed of VO(6) octahedra that are bridged by SeO(3) polyhedra. The oxidation state of the vanadium cation is +4 because of the partial reduction of V(2)O(5) by SeO(2) at high temperature. Ba(3)(VO(2))(2)(SeO(3))(4) features a 0D [(VO(2))(SeO(3))(2)](3-) anion. Sr(V(2)O(5))(TeO(3)) displays a unique 1D vanadium(V) tellurite chain composed of V(2)O(8) and V(2)O(7) units connected by tellurite groups, forming 4- and 10-MRs, whereas Sr(2)(V(2)O(5))(2)(TeO(3))(2)(H(2)O) exhibits a 2D layer consisting of [V(4)O(14)] tetramers interconnected by bridging TeO(3)(2-) anions with the Sr(2+) and water molecules located at the interlayer space. Ba(2)(VO(3))Te(4)O(9)(OH) exhibits a one-dimensional (1D) vanadium tellurite chain composed of a novel 1D [Te(4)O(9)(OH)](3-) chain further decorated by VO(4) tetrahedra. Ba(2)V(2)O(5)(Te(2)O(6)) also features a 1D vanadium(V) tellurites chain in which neighboring VO(4) tetrahedra are bridged by [Te(2)O(6)](4-) dimers. The existence of V(4+) ions in Sr(2)(VO)(3)(SeO(3))(5) is also confirmed by magnetic measurements. The results of optical diffuse-reflectance spectrum measurements and electronic structure calculations based on density functional theory (DFT) methods indicate that all six compounds are wide-band gap semiconductors.

12.
Inorg Chem ; 49(20): 9581-9, 2010 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-20853861

RESUMEN

Three new novel palladium(II) iodates with square-planar PdO(4) units, namely, Pd(IO(3))(2), AgPd(IO(3))(3), and BaPd(IO(3))(4), have been successfully hydrothermally synthesized. They represent the first ternary and quaternary palladium(II) iodates and display three different structural types. Pd(IO(3))(2) exhibits a novel two-dimensional (2D) layered structure in which each PdO(4) square further connects with four neighboring ones by four bridging IO(3) groups. AgPd(IO(3))(3) exhibits a unique three-dimensional (3D) network based on unique one-dimensional (1D) [Pd(IO(3))(3)](-) anionic chains along the c-axis which are further interconnected by Ag(+) cations. BaPd(IO(3))(4) is isostructural with KAu(IO(3))(4), and its structure features zero-dimensional (0D) [Pd(IO(3))(4)](2-) anionic units that are interconnected by Ba(2+) cations. These materials can be polar or non-polar depending on the different alignments of the lone pairs of the I(V) atoms. Pd(IO(3))(2) and AgPd(IO(3))(3) are non-polar and centrosymmetric, hence not second-harmonic generation (SHG) active. BaPd(IO(3))(4) is polar and displays a moderate SHG response of about 0.4× KTP. Thermal analyses, optical, luminescent, and ferroelectric properties as well as electronic structure calculations have also been performed.

13.
Inorg Chem ; 49(10): 4599-605, 2010 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-20397684

RESUMEN

Explorations of new second-order nonlinear optical (NLO) materials in the K(I)-M(II) -I(V)-O systems led to four novel mixed metal iodates, namely, K(2)M(IO(3))(4)(H(2)O)(2) (M = Mn, Co, Zn, Mg). The four compounds are isostructural and crystallize in space group I2 which is in the chiral and polar crystal class 2. Their structure features zero-dimensional {M(IO(3))(4)(H(2)O)(2)}(2-) anions that are separated by K(+) cations. The M(II) centers are ligated by two aqua ligands in trans fashion and four monodentate iodate anions. The K(+) cation is eight-coordinated by two iodate anions in bidentate chelating fashion and four other iodates in a unidentate fashion. Second harmonic generation (SHG) measurements indicate that K(2)Zn(IO(3))(4)(H(2)O)(2) and K(2)Mg(IO(3))(4)(H(2)O)(2) display moderate SHG responses that are approximately 2.3 and 1.4 times of KH(2)PO(4) (KDP), respectively, and they are also phase-matchable. The SHG response of K(2)Co(IO(3))(4)(H(2)O)(2) is much weaker (about 0.3 x KDP), and no obvious SHG signal was detected for K(2)Mn(IO(3))(4)(H(2)O)(2). Results of optical property calculations for the Zn and Mg phases revealed SHG responses of approximately 5.3 and 4.7 times of KDP, respectively, the order of Zn > Mg is in good agreement with the experiment data.

14.
Chem Sci ; 11(23): 6045-6052, 2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34094097

RESUMEN

Potassium-selenium (K-Se) batteries offer fairly high theoretical voltage (∼1.88 V) and energy density (∼1275 W h kgSe -1). However, in practice, their operation voltage is so far limited to ∼1.4 V, resulting in insufficient energy utilization and mechanistic understanding. Here, it is demonstrated for the first time that K-Se batteries operating in concentrated ether-based electrolytes follow distinctive reaction pathways involving reversible stepwise conversion reactions from Se to K2Se x (x = 5, 3, 2, 1). The presence of redox intermediates K2Se5 at ∼2.3 V and K2Se3 at ∼2.1 V, in contrast with previous reports, enables record-high average discharge plateau voltage (1.85 V) and energy density (998 W h kgSe -1 or 502 W h kgK2Se -1), both approaching the theoretical limits and surpassing those of previously reported Na/K/Al-Se batteries. Moreover, experimental analysis and first-principles calculations reveal that the effective suppression of detrimental polyselenide dissolution/shuttling in concentrated electrolytes, together with high electron conductibility of Se/K2Se x , enables fast reaction kinetics, efficient utilization of Se, and long-term cyclability of up to 350 cycles, which are impracticable in either K-S counterparts or K-Se batteries with low/moderate-concentration electrolytes. This work may pave the way for mechanistic understanding and full energy utilization of K-Se battery chemistry.

15.
Adv Mater ; 32(45): e2003592, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33015911

RESUMEN

Low-cost and high-safety aqueous Zn-ion batteries are an exceptionally compelling technology for grid-scale energy storage. However, their development has been plagued by the lack of stable cathode materials allowing fast Zn2+ -ion insertion and scalable synthesis. Here, a lattice-water-rich, inorganic-open-framework (IOF) phosphovanadate cathode, which is mass-producible and delivers high capacity (228 mAh g-1 ) and energy density (193.8 Wh kg-1 or 513 Wh L-1 ), is reported. The abundant lattice waters functioning as a "charge shield" enable a low Zn2+ -migration energy barrier, (0.66 eV) even close to that of Li+ within LiFePO4 . This fast intrinsic ion-diffusion kinetics, together with nanostructure effect, allow the achievements of ultrafast charging (71% state of charge in 1.9 min) and an ultrahigh power density (7200 W kg-1 at 107 Wh kg-1 ). Equally important, the IOF exhibits a quasi-zero-strain feature (<1% lattice change upon (de)zincation), which ensures ultrahigh cycling durability (3000 cycles) and Coulombic efficiencies of 100%. The cell-level energy and power densities reach ≈90 Wh kg-1 and ≈3320 W kg-1 , far surpassing commercial lead-acid, Ni-Cd, and Ni-MH batteries. Lattice-water-rich IOFs may open up new opportunities for exploring stable and fast-charging Zn-ion batteries.

16.
J Am Chem Soc ; 131(27): 9486-7, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19545152

RESUMEN

By combination of Nb(5+) (having a d(0) electronic configuration) and the lone-pair-containing iodate anion, a new SHG material, BaNbO(IO(3))(5), has been prepared. It exhibits a very large SHG response (approximately 14 times that of KH(2)PO(4) and approximately 660 times that of alpha-SiO(2)) and is phase-matchable. The material has high thermal stability and a wide transparent region.

17.
Inorg Chem ; 48(24): 11809-20, 2009 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-19919023

RESUMEN

Five new transition metal molybdenum(VI) selenites or tellurites, namely, TM(MoO(3))(SeO(3))(H(2)O) (TM = Mn, Co), Fe(2)(Mo(2)O(7))(SeO(3))(2)(H(2)O), Cu(2)(MoO(4))(SeO(3)), and Ni(3)(MoO(4))(TeO(3))(2), have been prepared and structurally characterized. They belong to five different types of structures. Mn(MoO(3))(SeO(3))(H(2)O) and Ni(3)(MoO(4))(TeO(3))(2) are non-centrosymmetric and crystallize in the orthorhombic space groups Pmc2(1) and P2(1)2(1)2(1), respectively, whereas Co(MoO(3))(SeO(3))(H(2)O), Fe(2)(Mo(2)O(7))(SeO(3))(2)(H(2)O), and Cu(2)(MoO(4))(SeO(3)) are centrosymmetric and crystallize in P1, C2/c, P2(1)/c, respectively. The Mo(6+) cations in Mn(MoO(3))(SeO(3))(H(2)O), Co(MoO(3))(SeO(3))(H(2)O), and Fe(2)(Mo(2)O(7))(SeO(3))(2)(H(2)O) are in severely distorted octahedral geometry whereas those in Cu(2)(MoO(4))(SeO(3)) and Ni(3)(MoO(4))(TeO(3))(2) are in a slightly distorted tetrahedral geometry. Second-Harmonic Generation (SHG) measurements revealed that (MoO(3))(SeO(3))(H(2)O) displays a moderate SHG signal of about 3 x KH(2)PO(4) (KDP) whereas the SHG response of Ni(3)(MoO(4))(TeO(3))(2) is much weaker than that of KDP.

18.
Chem Sci ; 10(9): 2604-2612, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30996976

RESUMEN

Rechargeable potassium-ion batteries (PIBs) show promise beyond Li-ion technology in large-scale electrical-energy storage due to the abundance and low cost of potassium resources. However, the intercalation of large-size K+ generally results in irreversible structural degradation and short lifespan to the hosts, representing a major obstacle. Here, we report a new electrochemical K+-intercalation host, tungsten disulfide (WS2), which can store 0.62 K+ per formula unit with a reversible capacity of 67 mA h g-1 and well-defined voltage plateaus at an intrinsically safe average operation potential of 0.72 V versus K/K+. In situ X-ray diffraction and ex situ electron microscopy revealed the underlying intercalation mechanism, a relatively small cell volume change (37.81%), and high reversibility of this new battery chemistry. Such characteristics impart WS2 with ultrahigh structural stability and a long lifespan, regardless of deep or fast charging. WS2 achieved record-high cyclability among chalcogenides up to 600 cycles with 89.2% capacity retention at 0.3C, and over 1000 cycles with 96.3% capacity retention and an extraordinary average Coulombic efficiency of 99.90% at 2.2C. This intercalation electrochemistry may open up new opportunities for the design of long-cycle-life and high-safety PIBs.

19.
Chem Sci ; 9(29): 6193-6198, 2018 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-30090306

RESUMEN

Storing as many as three K-ions per atom, bismuth is a promising anode material for rechargeable potassium-ion batteries that may replace lithium-ion batteries for large-scale electrical energy storage. However, Bi suffers from poor electrochemical cyclability in conventional electrolytes. Here, we demonstrate that a 5 molar (M) ether-based electrolyte, versus the typical 1 M electrolyte, can effectively passivate the bismuth surface due to elevated reduction resistance. This protection allows a bismuth-carbon anode to simultaneously achieve high specific capacity, electrochemical cyclability and Coulombic efficiency, as well as small potential hysteresis and improved rate capability. We show that at a high electrolyte concentration, the bismuth anode demonstrates excellent cyclability over 600 cycles with 85% capacity retention and an average Coulombic efficiency of 99.35% at 200 mA g-1. This "concentrated electrolyte" approach provides unexpected new insights to guide the development of long-cycle-life and high-safety potassium-ion batteries.

20.
ACS Nano ; 11(9): 9231-9238, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28792746

RESUMEN

Attaining aqueous solutions of individual, long single-walled carbon nanotubes is a critical first step for harnessing the extraordinary properties of these materials. However, the widely used ultrasonication-ultracentrifugation approach and its variants inadvertently cut the nanotubes into short pieces. The process is also time-consuming and difficult to scale. Here we present an unexpectedly simple solution to this decade-old challenge by directly neutralizing a nanotube-chlorosulfonic acid solution in the presence of sodium deoxycholate. This straightforward superacid-surfactant exchange eliminates the need for both ultrasonication and ultracentrifugation altogether, allowing aqueous solutions of individual nanotubes to be prepared within minutes and preserving the full length of the nanotubes. We found that the average length of the processed nanotubes is more than 350% longer than sonicated controls, with a significant fraction approaching ∼9 µm, a length that is limited by only the raw material. The nondestructive nature is manifested by an extremely low density of defects, bright and homogeneous photoluminescence in the near-infrared, and ultrahigh electrical conductivity in transparent thin films (130 Ω/sq at 83% transmittance), which well exceeds that of indium tin oxide. Furthermore, we demonstrate that our method is fully compatible with established techniques for sorting nanotubes by their electronic structures and can also be readily applied to graphene. This surprisingly simple method thus enables nondestructive aqueous solution processing of high-quality carbon nanomaterials at large-scale and low-cost with the potential for a wide range of fundamental studies and applications, including, for example, transparent conductors, near-infrared imaging, and high-performance electronics.


Asunto(s)
Ácido Desoxicólico/química , Nanotubos de Carbono/química , Ácidos Sulfónicos/química , Tensoactivos/química , Agua/química , Conductividad Eléctrica , Luminiscencia , Nanotecnología/métodos , Nanotubos de Carbono/ultraestructura , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA