Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Macromol Rapid Commun ; 45(3): e2300510, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37849407

RESUMEN

Polyimide (PI) film with hydrophilic greatly limits their application in the field of microelectronic device packaging. A novel hydrophobic PI film with sag structure and improved mechanical properties is prepared relying on the reaction between anhydride-terminated isocyanate-based polyimide (PIY) containing a seven-membered ring structure and the amino-terminated polyamide acid (PAA) via multi-hybrid strategy, this work named it as hybrid PI film and marked it as PI-PIY-X. PI-PIY-30 showed excellent hydrophobic properties, and the water contact angle could reach to 102°, which is 20% and 55% higher than simply PI film and PIY film, respectively. The water absorption is only 1.02%, with a decrease of 49% and 53% compared with PI and PIY. Due to that the degradation of seven-membered ring and generation of carbon dioxide led to the formation of sag structure, the size of sag structures is ≈16.84 and 534.55 nm for in-plane and out-plane direction, which are observed on surface of PI-PIY-30. Meanwhile, PI-PIY-30 possessed improved mechanical properties, and the tensile strength is 109.08 MPa, with 5% and more than 56% higher than that of pure PI and PIY film, showing greatly application prospects in the field of integrated circuit.


Asunto(s)
Aminoácidos , Anhídridos , Dióxido de Carbono , Isocianatos , Agua
2.
BMC Neurol ; 23(1): 345, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37784047

RESUMEN

BACKGROUND: Patients with cognitive dysfunction may present with significantly prolonged the P2 wave latency of flash visual evoked potential. However, no studies have been reported on whether the P2 wave latency of flash visual evoked potential is prolonged in patients with subcortical arteriosclerotic encephalopathy (SAE). OBJECTIVE: To examine the relationship between flash visual evoked potential P2 wave latency (FVEP-P2 wave latency) and cognitive impairment in patients with SAE. METHODS: Overall, we recruited 38 SAE patients as the observation cohort (OC) and 34 healthy volunteers as the control cohort (CC). We measured the FVEP-P2 wave latency for both groups. The SAE patients' cognitive abilities were evaluated via mini-mental state examination (MMSE) and the association between the latency of FVEP-P2 and MMSE score was explored by Pearsons´s correlation test. RESULTS: There is no significant difference between OC (21 males and 17 females; 68.6 ± 6.7 years of age and 9.6 ± 2.8 years of education) and CC (19 males and 15 females; 65.3 ± 5.9 years of age and 10.1 ± 2.6 years of education) in gender and age composition and education level. The FVEP-P2 wave latency of the CC group was (108.80 ± 16.70) ms and the OC FVEP-P2 wave latency was (152.31 ± 20.70) ms. The OC FVEP-P2 wave latency was significantly longer than the CC (P < 0.05). In terms of MMSE scores, the MMSE scores of CC was (28.41 ± 2.34), and that of OC was (9.08 ± 4.39). Compared to the CC, the OC MMSE score was significantly lower (P < 0.05). In addition, the FVEP-P2 wave latency was inversely related to the MMSE (r = -0.4465, P < 0.05) in SAE patients. CONCLUSION: The FVEP-P2 wave latency wave latency was significantly prolonged in SAE patients and strongly associated with the degree of cognitive dysfunction.


Asunto(s)
Disfunción Cognitiva , Demencia Vascular , Masculino , Femenino , Humanos , Potenciales Evocados Visuales , Disfunción Cognitiva/diagnóstico , Cognición , Escolaridad
3.
Macromol Rapid Commun ; 44(13): e2300060, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37014631

RESUMEN

Currently, heat accumulation has seriously affected the stabilities and life of electronic devices. Polyimide (PI) film with high thermal conductivity coefficient (λ) has long been held up as an ideal solution for heat dissipation. Based on the thermal conduction mechanisms and classical thermal conduction models, this review presents design ideas of PI films with microscopically ordered liquid crystalline structures which are of great significance for breaking the limit of λ enhancement and describes the construction principles of thermal conduction network in high-λ filler strengthened PI films. Furthermore, the effects of filler type, thermal conduction paths, and interfacial thermal resistances on thermally conductive behavior of PI film are systematically reviewed. Meanwhile, this paper summarizes the reported research and provides an outlook on the future development of thermally conductive PI films. Finally, it is expected that this review will give some guidance to future studies in thermally conductive PI film.


Asunto(s)
Electrónica , Cristales Líquidos , Conductividad Eléctrica , Calor , Conductividad Térmica
4.
Mol Cell Neurosci ; 123: 103784, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36228967

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disease still without any cure. Brain-derived neurotrophic factor (BDNF) has shown therapeutic potential in PD, which is limited by its short half-life and inability to penetrate the blood-brain barrier. Stem cells not only present migration, differentiation and neurotrophy characteristics, but also can be used as delivery vectors for BDNF. This study aimed to investigate the therapeutic effects and possible mechanisms of BDNF-modified human umbilical cord mesenchymal stem cells (hUC-MSCs)-derived dopaminergic (DAergic)-like neurons in the PD rats. Results showed that transplantation of BDNF-modified hUC-MSCs-derived DAergic-like neurons improved the apomorphine induced rotation behavior of PD rats, increased the dopamine concentration and the expression of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule-1 (Iba-1) in the striatum, promoted the expression of tyrosine hydroxylase (TH), nuclear receptor-related factor 1 (Nurr1), pituitary homeobox 3 (Pitx3), BDNF, tyrosine kinase B (TrkB), phosphatidylinositol-3-hydroxykinase (PI3K), phosphorylated protein kinase B (p-Akt), heat shock protein 60 (Hsp60), toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) and inhibited the neural apoptosis in the substantia nigra (SN) and striatum. Results suggest that BDNF-modified hUC-MSCs-derived DAergic-like neurons improve the rotation of PD rats might through neuroprotection and anti-neuroinflammation by regulating the BDNF-TrkB-PI3K/Akt and Hsp60-TLR4/MyD88 signaling pathways, respectively.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Ratas , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/metabolismo , Dopamina/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor Toll-Like 4/metabolismo , Neuroprotección , Enfermedades Neurodegenerativas/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas Sprague-Dawley , Neuronas/metabolismo , Cordón Umbilical/metabolismo , Neuronas Dopaminérgicas/metabolismo
5.
J Virol ; 95(19): e0086121, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34160253

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen causing the coronavirus disease 2019 (COVID-19) global pandemic. No effective treatment for COVID-19 has been established yet. The serine protease transmembrane protease serine 2 (TMPRSS2) is essential for viral spread and pathogenicity by facilitating the entry of SARS-CoV-2 into host cells. The protease inhibitor camostat, an anticoagulant used in the clinic, has potential anti-inflammatory and antiviral activities against COVID-19. However, the potential mechanisms of viral resistance and antiviral activity of camostat are unclear. Herein, we demonstrate high inhibitory potencies of camostat for a panel of serine proteases, indicating that camostat is a broad-spectrum inhibitor of serine proteases. In addition, we determined the crystal structure of camostat in complex with a serine protease (uPA [urokinase-type plasminogen activator]), which reveals that camostat is inserted in the S1 pocket of uPA but is hydrolyzed by uPA, and the cleaved camostat covalently binds to Ser195. We also generated a homology model of the structure of the TMPRSS2 serine protease domain. The model shows that camostat uses the same inhibitory mechanism to inhibit the activity of TMPRSS2, subsequently preventing SARS-CoV-2 spread. IMPORTANCE Serine proteases are a large family of enzymes critical for multiple physiological processes and proven diagnostic and therapeutic targets in several clinical indications. The serine protease transmembrane protease serine 2 (TMPRSS2) was recently found to mediate SARS-CoV-2 entry into the host. Camostat mesylate (FOY 305), a serine protease inhibitor active against TMPRSS2 and used for the treatment of oral squamous cell carcinoma and chronic pancreatitis, inhibits SARS-CoV-2 infection of human lung cells. However, the direct inhibition mechanism of camostat mesylate for TMPRSS2 is unclear. Herein, we demonstrate that camostat uses the same inhibitory mechanism to inhibit the activity of TMPRSS2 as uPA, subsequently preventing SARS-CoV-2 spread.


Asunto(s)
Antivirales/farmacología , Ésteres/farmacología , Guanidinas/farmacología , SARS-CoV-2/efectos de los fármacos , Serina Endopeptidasas/química , Serina Endopeptidasas/farmacología , Serina Proteasas/farmacología , Antivirales/química , COVID-19/prevención & control , Carcinoma de Células Escamosas , Ésteres/química , Ésteres/metabolismo , Guanidinas/química , Guanidinas/metabolismo , Humanos , Simulación de Dinámica Molecular , Neoplasias de la Boca , Dominios Proteicos , Alineación de Secuencia , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Serina Proteasas/química , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/farmacología , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
6.
Int J Mol Sci ; 23(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35742958

RESUMEN

The competitive balance between uranium (VI) (U(VI)) adsorption and fouling resistance is of great significance in guaranteeing the full potential of U(VI) adsorbents in seawater, and it is faced with insufficient research. To fill the gap in this field, a molecular dynamics (MD) simulation was employed to explore the influence and to guide the design of mass-produced natural hemp fibers (HFs). Sulfobetaine (SB)- and carboxybetaine (CB)-type zwitterions containing soft side chains were constructed beside amidoxime (AO) groups on HFs (HFAS and HFAC) to form a hydration layer based on the terminal hydrophilic groups. The soft side chains were swayed by waves to form a hydration-layer area with fouling resistance and to simultaneously expel water molecules surrounding the AO groups. HFAS exhibited greater antifouling properties than that of HFAO and HFAC. The U(VI) adsorption capacity of HFAS was almost 10 times higher than that of HFAO, and the max mass rate of U:V was 4.3 after 35 days of immersion in marine water. This paper offers a theory-guided design of a method to the competitive balance between zwitterion-induced fouling resistance and seawater U(VI) adsorption on natural materials.


Asunto(s)
Cannabis , Uranio , Adsorción , Interacciones Hidrofóbicas e Hidrofílicas , Uranio/química , Agua/química
7.
Environ Microbiol ; 23(5): 2366-2373, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33538382

RESUMEN

The Gram-positive bacterium Bacillus subtilis initiates the sporulation process under conditions of nutrient limitation. Here, we review related work in this field, focusing on the protein processing of the pro-σK activation. The purpose of this review is to illustrate the mechanism of pro-σK activation and provide structural insights into the regulation of spore production. Sporulation is not only important in basic science but also provides mechanistic insight for bacterial control in applications in, e.g., food industry.


Asunto(s)
Bacillus subtilis , Factor sigma , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Factor sigma/metabolismo , Esporas Bacterianas/metabolismo
8.
Dyes Pigm ; 194: 109570, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34183871

RESUMEN

The ongoing pandemic of coronavirus disease 2019 (COVID-19) posed a major challenge to the public health. Currently, no proven antiviral treatment for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is available. Here we report compounds pentalysine ß-carbonylphthalocyanine zinc (ZnPc5K) and chlorin e6 (ce6) potently inhibited the viral infection and replication in vitro with EC50 values at nanomolar level. These compounds were first identified by screening a panel of photosensitizers for photodynamic viral inactivation. Such viral inactivation strategy is implementable, and has unique advantages, including resistance to virus mutations, affordability compared to the monoclonal antibodies, and lack of long-term toxicity.

9.
ACS Sens ; 9(8): 3848-3863, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39046083

RESUMEN

Flexible piezoresistive sensors are in high demand in areas such as wearable devices, electronic skin, and human-machine interfaces due to their advantageous features, including low power consumption, excellent bending stability, broad testing pressure range, and simple manufacturing technology. With the advancement of intelligent technology, higher requirements for the sensitivity, accuracy, response time, measurement range, and weather resistance of piezoresistive sensors are emerging. Due to the designability of polymer porous materials and conductive phases, and with more multivariate combinations, it is possible to achieve higher sensitivity and lower detection limits, which are more promising than traditional flexible sensor materials. Based on this, this work reviews recent advancements in research on flexible pressure sensors utilizing polymer porous materials. Furthermore, this review examines sensor performance optimization and development from the perspectives of three-dimensional porous flexible substrate regulation, sensing material selection and composite technology, and substrate and sensing material structure design.


Asunto(s)
Polímeros , Dispositivos Electrónicos Vestibles , Porosidad , Polímeros/química , Humanos , Presión
10.
J Colloid Interface Sci ; 670: 223-233, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761575

RESUMEN

Macrophages can kill bacteria and viruses by releasing free radicals, which provides a possible approach to construct antifouling coatings with dynamic surfaces that release free radicals if the breaking of dynamic covalent bonds is precisely regulated. Herein, inspired by the defensive behavior of macrophages of releasing free radicals to kill bacteria and viruses, a marine antifouling coating composed of polyurethane incorporating dimethylglyoxime (PUx-DMG) is prepared by precise regulation of dynamic oxime-urethane covalent bonds. The obtained alkyl radical (R·) derived from the cleavage of the oxime-urethane bonds manages to effectively suppress the attachment of marine biofouling. Moreover, the intrinsic dynamic surface makes it difficult for biofouling to adhere and ultimately achieves sustainable antifouling property. Notably, the PU50-DMG coating not only presents efficient antibacterial and antialgae properties, but also prevents macroorganisms from settling in the sea for up to 4 months. This provides a pioneer broad-spectrum strategy to explore the marine antifouling coatings.


Asunto(s)
Antibacterianos , Incrustaciones Biológicas , Macrófagos , Propiedades de Superficie , Incrustaciones Biológicas/prevención & control , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Animales , Antibacterianos/farmacología , Antibacterianos/química , Poliuretanos/química , Poliuretanos/farmacología , Ratones , Oximas/química , Oximas/farmacología , Células RAW 264.7 , Tamaño de la Partícula , Pruebas de Sensibilidad Microbiana , Estructura Molecular
11.
Polymers (Basel) ; 15(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36987162

RESUMEN

For the advantages of low cost, excellent thermal insulation, and sound absorption properties, the rigid isocyanate-based polyimide foam (RPIF) presents great application prospects as a building insulation material. However, its inflammability and the accompanying toxic fumes create huge safety hazard. In this paper, reactive phosphate-containing polyol (PPCP) is synthesized and employed with expandable graphite (EG) to obtain RPIF with excellent use safety. EG can be considered as an ideal partner for PPCP to weaken the drawbacks in toxic fume release. Limiting oxygen index (LOI), cone calorimeter test (CCT), and toxic gas results show that the combination of PPCP and EG can synergistically enhance flame retardancy and the use safety of RPIF owing to the unique structure of a dense char layer possessing a flame barrier and toxic gas adsorption effects. When EG and PPCP are simultaneously applied to the RPIF system, the higher EG dosage will bring higher positive synergistic effects in the use safety of RPIF. The most preferred ratio of EG and PPCP is 2:1 (RPIF-10-5) in this study; RPIF-10-5 shows the highest LOI, low CCT results and specific optical density of smoke, and low HCN concentration. This design and the findings are of great significance to improving the application of RPIF.

12.
J Hazard Mater ; 440: 129735, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35988484

RESUMEN

Uranium is an important fuel for nuclear power, with 4.5 billion tons of it stored in the oceans, 1,000 times more than on land. Polymer membrane materials are widely used in the marine resources fields, due to their convenient collection, good separation and can work continuously. Herein, a poly(amidoxime)-polyacrylonitrile blend membrane (PCP) with high flux, excellent antibacterial properties and uranium adsorption performance has been prepared by using the phase inversion method, and the prepared membrane was used for highly efficient uranium extraction from seawater. In static adsorption experiments, the PCP membrane reached adsorption equilibrium after 48 h, and the adsorption capacity was 303.89 mg/g (C0 =50 mg/L). In dynamic adsorption experiments, it was found that the lower flow rate and higher number of membrane layers were favorable for dynamic adsorption. In addition, the water flux of the PCP membrane was 7.4 times higher than that of the PAN membrane. The adsorption mechanism can be attributed to the chelation between amino and hydroxyl groups in CS, amidoxime group in poly(amidoxime) and uranyl ions. The simple preparation process coupled with the excellent adsorption performance indicated that the PCP membrane would be a promising material for the uranium extraction from seawater.


Asunto(s)
Uranio , Resinas Acrílicas , Adsorción , Antibacterianos , Iones , Oximas , Polímeros , Agua de Mar , Agua
13.
J Colloid Interface Sci ; 622: 109-116, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35490613

RESUMEN

The rapid development of nuclear energy and the accelerated consumption of uranium (U(VI)) ores have forced researchers to turn to marine U(VI) harvesting. However, the performance of marine U(VI) harvesting materials was challenged by the combination of ultralow concentrations of U(VI), high concentrations of various interfering ions and biofouling from abundant marine living organisms. Natural abundant hemp fibers (HFs) were adhered by mussel-inspired polydopamine microspheres (HFMPDA) during self-polymerization. Both HFs and PDA are derived from natural products with low-cost and eco-friendly properties to guarantee compatibility with biological marine environments. HFMPDA exhibits an outstanding distribution coefficient of 10.51 ± 0.51 L g-1 for U(VI) and great fouling resistance. The coordination forms between the U(VI) ion and HFMPDA were investigated by density functional theory (DFT), and the antifouling property was simulated by molecular dynamics (MD) calculations. The adsorption capacity of HFMPDA is 128.43 ± 3.26 µg g-1, which is 1.75 and 6.05 times higher than that of HFPDA (only covered by PDA) and V(V), respectively, after immersion for 34 days in the Yellow Sea, China. These polydopamine microspheres adhered to HF will be a photothermal marine U(VI) harvesting material with enhanced selectivity and fouling resistance.


Asunto(s)
Incrustaciones Biológicas , Cannabis , Uranio , Adsorción , Incrustaciones Biológicas/prevención & control , Indoles , Microesferas , Polímeros
14.
J Colloid Interface Sci ; 610: 1015-1026, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34865738

RESUMEN

Polyacrylonitrile (PAN)-based materials have been studied for decades as uranium (U(VI)) adsorbents, because the further products of abundant nitrile groups, amidoxime (AO) groups, show great affinity for U(VI) ions. However, excessive amidoximation could cause the shrinkage of PAN fibers, resulting in decreased adsorption performance. Hence, an amino-reinforced amidoxime (ARAO) swelling layer was constructed on the PAN fiber surface (PAN-NH2-AO) by modification of the strongly hydrophilic amino group to prevent shrinkage. The molecular chains in the ARAO swelling layer would be swelled due to the adsorption of a large amount of water. Simultaneously, U(Ⅵ) ions can penetrate into the ARAO swelling layer with water molecules and coordinate with amino or AO groups, leading to increased adsorption performance. PAN-NH2-AO exhibited maximum U(VI) and water adsorption capacities of 492.61 mg g-1 and 20.32 g g-1 at 25 â„ƒ with a swelling ratio of 20.73%, respectively. The adsorption capacity of PAN-NH2-AO was 0.312 mg g-1 after a 91-day immersion in Yellow Sea, China. The study of the adsorption thermodynamics and kinetics of PAN-NH2-AO showed that the adsorption process was spontaneous homogeneous chemical adsorption. This paper proposes a novel method to obstruct amidoximation induced shrinkage and to maximize the potential application of PAN-based materials.


Asunto(s)
Uranio , Resinas Acrílicas , Adsorción , Oximas , Agua de Mar
15.
Micron ; 152: 103178, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34801958

RESUMEN

Anti-diatom testing is a basic method to evaluate the anti-fouling performance of coatings. Many existing results of anti-diatom performances are evaluated based on their attachment number or coverage area, ignoring the influence of the crawling and adhesion behavior of diatoms on the analysis results. Here, a Folium Sennae-like film with multiple structural units was prepared by considering the influence of diatom attachment behaviors on the analysis results. The anti-diatom performances of different parts (divided and called four parts: edge, surface, cross striation, and vertical pattern) on the Folium Sennae-like film were evaluated using the counting and area methods. Obviously, the anti-diatom performance of the Folium Sennae-like film was superior to that of epoxy resin without structure. Under equal areas, the average numbers of diatoms on the cross striation and the vertical pattern were similar to the surface. It was found that the attachment behavior of Halamphora sp. is affected by microstructure units, rather than the combined structure of which the scale is much larger than that of diatoms. Meanwhile, the average attachment area for the unit number of diatoms was calculated. The diatom attachment area without microstructure, surface, cross striation, or vertical pattern was 81.751, 106.950, 73.904, and 84.376 µm2, respectively. Moreover, the static and dynamic motion behaviors of Halamphora sp. were studied, and the theory for Halamphora sp. attachment was modeled in three dimensions. The variable morphology of Halamphora sp. lead to inaccurate results for diatom analyses based on the counting and area methods, which is summarized here. This study discusses the evaluation method of coatings by anti-diatom performance, further promoting the research of diatoms in the field of antifouling.


Asunto(s)
Diatomeas , Hojas de la Planta
16.
J Colloid Interface Sci ; 588: 9-18, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33387826

RESUMEN

Environmentally friendly antifouling coatings without biocide release need to be developed. Herein, a vertical array of nylon fibers coated with poly(sulfobetaine methacrylate) (PSBMA) was prepared by the electrostatic flocking technique and free radical polymerization catalyzed by Fe2+, which are called zwitterionic electrostatic flocking surfaces (ZEFS). The ZEFS showed resistance to diatoms because the fiber diameter was smaller than the diatom size. At the same time, the ZEFS prevented mussels adhesion. The number of plaques on the ZEFS was reduced by more than 98% and 96% compared with the glass surface and polydimethylsiloxane (PDMS) after a 4-day assay. The special surface morphology of the vertical arrangement of fibers makes it difficult for the mussels to empty seawater. Zwitterionic surface modification further enhanced the resistance to mussel adhesion. The ZEFS showed strong hydrophilicity with an underwater oil contact angle of up to 152 ± 2.4°, which reduces the adhesion work of mussel protein adhesion to the fibers and the wettability of the protein on the fiber surface. In addition, the zwitterionic layer exhibited good stability in artificial seawater, and it retained more than 96% stability after 30 days immersion in artificial seawater.


Asunto(s)
Bivalvos , Diatomeas , Animales , Metacrilatos , Polimerizacion , Electricidad Estática , Propiedades de Superficie
17.
J Colloid Interface Sci ; 603: 307-318, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34186406

RESUMEN

Mussels are typical marine fouling organisms that attach to surfaces though secretions, which is generally the focus of research on mussel-related fouling. This study reveals "a flowering tree" structure on mussel shells with antifouling performance. Based on the antifouling mechanism of surface microstructure, we prepared mussel-like shells (P) using the biomimetic replication method. Mussel adhesion experiments were conducted to examine the anti-mussel performances of the mussel shells and P. The anti-diatom performances of the mussel-like shells were also evaluated using three types of diatoms. The mussels responded differently to different locations on the shells, and the flowering tree microstructure exhibited excellent antifouling performance. In addition, VP (P immersed in vinyl silicon oil) and HP (P immersed in hydroxyl silicone oil) were prepared. The anti-diatom performance of VP was better than those of P and HP, indicating that hydrophobicity has a greater influence on anti-diatom performance than electronegativity. The newly discovered antifouling micro-nano structure was parameterized, revealing that a branch of the flowering tree has an inclination of 13.3° to the surface with a height of 210.1 nm. The results of this study provide insights for further investigations of bionic micro-nano structures in the field of antifouling.


Asunto(s)
Incrustaciones Biológicas , Nanoestructuras , Organismos Acuáticos , Incrustaciones Biológicas/prevención & control , Biomimética , Árboles
18.
Chemosphere ; 271: 129548, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33445024

RESUMEN

In this study, a swelling layer was constructed on the surface of the nano-polyacrylonitrile (PAN) fiber fabric prepared by electrospinning to enrich uranium (U (VI)) adsorption from seawater. The constructed swelling layer composes of a polyethyleneimine (PEI) containing a huge amount of amino groups and imino groups with strong hydrophilicity. The molecular chain swelled in an aqueous solution by forming a swelling layer on the PAN surface. In addition, p-aminobenzenesulfonic acid (SA) was used as the side chain end group grafted on the PAN surface, the benzene ring as the side chain can hinder the rotation of the PEI chain, thereby increasing the rigidity. The increasing of the rigidity leads to stretch the conformation of the PEI molecular chain, increasing the probability of collision with U (VI), which is beneficial for adsorption. The adsorption capacity of the prepared adsorbent in the adsorption experiment reached 215.25 mg g-1, and the adsorption capacity in the 8 ppm spiked simulated seawater reached 144.5 mg g-1. The adsorption mechanism of U (VI) was analyzed by XPS. The sulfonic acid group in SA as the terminal group and amino group in the swelling layer formed a coordination structure with U (VI). The swelling layer constructed on the surface of polyacrylonitrile fibers is used to effectively extract uranium from seawater.


Asunto(s)
Uranio , Resinas Acrílicas , Adsorción , Cinética , Extractos Vegetales , Poliaminas , Agua de Mar
19.
Micron ; 140: 102951, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33142190

RESUMEN

Diatoms are one of the biofouling species attached to the substrate that can cause substrate corrosion, fuel consumption and destruction of the ecological balance. Therefore, the study of single-cellfouling organisms, particularly, the quantitative analysis of extracellular polymeric substances (EPS) is essential for antifouling. Atomic Force Microscope (AFM) was used to quantify three types of diatoms: Nitzschia closterium (N. closterium), Phaeodactylum tricornutum (P. tricornutum) and Halamphora sp. The situation of N. closterium was analyzed multiple times and the results showed that the adhesion value range of N. closterium with nacked chromatophores was three times larger than the mature one. The discovery of the EPS secretion from chromatophore is discussed in this paper, and the proposed mechanism has special implications to study the adhesive protein. Adhesion capabilities of different diatom genera and species were revealed as well. The average adhesion values of N. closterium, P. tricornutum and Halamphora sp. were about 1.7 nN, 3.3 nN and 2.5 nN, respectively, which suggest P. tricornutum could be a better candidate for testing diatom resistance on epoxy materials in the lab. Experimental data and discussions in this paper provide insights for further study of diatoms in the field of antifouling.


Asunto(s)
Secreciones Corporales/química , Diatomeas/química , Diatomeas/fisiología , Matriz Extracelular de Sustancias Poliméricas/química , Microscopía de Fuerza Atómica/métodos , Adhesivos/metabolismo , Diatomeas/ultraestructura , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Contaminantes Químicos del Agua
20.
ACS Appl Mater Interfaces ; 12(1): 934-944, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31829553

RESUMEN

The electrocatalytic applications of traditional polyimide film and carbon nanomaterials are hindered due to a shortage of three-dimensional hierarchical conductivity and porous structure. Herein, a novel polyimide-based electrode based on a highly efficient palladium nanocatalyst embellished three-dimensional reduced graphene oxide/polyimide foam (Pd/3D RGO@PI foam, signed PRP) toward H2O2 electroreduction was designed and prepared through thermal foaming procedure, followed by facile dip-drying method and electrodeposition. As expected, such a binder-free, 3D hierarchical structure PRP electrode presented high catalytic property, good stability, as well as low activation energy toward H2O2 electroreduction during the electrochemical measurement period. The PRP electrode showed a reduction current density of 810 mA·cm-2 at -0.2 V (vs Ag/AgCl) in 2.0 mol·L-1 H2SO4 and 2.0 mol·L-1 H2O2. Moreover, the PRP electrode also illustrated good reproducibility and repeatability. Reproducibility presented almost 95.8% of the initial current density after 1000 cycles test. Also, the activation energy of H2O2 electroreduction on 3D PRP electrode was 21.624 kJ·mol-1. Benefiting from the 3D hierarchical structure and efficient catalyst, the PRP electrode exhibited excellent electrocatalytic performance and was considered to be a potential candidate material for fuel cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA