RESUMEN
Vitiligo is a common acquired skin disorder caused by immune-mediated destruction of epidermal melanocytes. Systemic glucocorticoids (GCs) have been used to prevent the progression of active vitiligo, with 8.2-56.2% of patients insensitive to this therapy. Currently, there is a lack of biomarkers that can accurately predict and evaluate treatment responses. The goal of this study was to identify candidate urinary protein biomarkers to predict the efficacy of GCs treatment in active vitiligo patients and monitor the disease. Fifty-eight non-segmental vitiligo patients were enrolled, and 116 urine samples were collected before and after GCs treatment. Patients were classified into a treatment-effective group (n = 42) and a treatment-resistant group (n = 16). Each group was divided equally into age- and sex-matched experimental and validation groups, and proteomic analyses were performed. Differentially expressed proteins were identified, and Ingenuity Pathway Analysis was conducted for the functional annotation of these proteins. Receiver operating characteristic curves were used to evaluate the diagnostic value. A total of 245 and 341 differentially expressed proteins between the treatment-resistant and treatment-effective groups were found before and after GCs treatment, respectively. Bioinformatic analysis revealed that the urinary proteome reflected the efficacy of GCs in active vitiligo patients. Eighty and fifty-four candidate biomarkers for treatment response prediction and treatment response evaluation were validated, respectively. By ELISA analysis, retinol binding protein-1 and torsin 1A interacting protein 1 were validated to have the potential to predict the efficacy of GCs with AUC value of 1 and 0.875, respectively. Retinol binding protein-1, torsin 1A interacting protein 1 and protein disulfide-isomerase A4 were validated to have the potential to reflect positive treatment effect to GCs treatment in active vitiligo with AUC value of 0.861, 1 and 0.868, respectively. This report is the first to identify urine biomarkers for GCs treatment efficacy prediction in vitiligo patients. These findings might contribute to the application of GCs in treating active vitiligo patients.
RESUMEN
Knowledge about the mouse brown adipose tissue (BAT) proteome can provide a deeper understanding of the function of mammalian BAT. Herein, a comprehensive analysis of interscapular BAT from C57BL/6J female mice was conducted by 2DLC and high-resolution mass spectrometry to construct a comprehensive proteome dataset of mouse BAT proteins. A total of 4949 nonredundant proteins were identified, and 4495 were quantified using the iBAQ method. According to the iBAQ values, the BAT proteome was divided into high-, middle- and low-abundance proteins. The functions of the high-abundance proteins were mainly related to glucose and fatty acid oxidation to produce heat for thermoregulation, while the functions of the middle- and low-abundance proteins were mainly related to protein synthesis and apoptosis, respectively. Additionally, 497 proteins were predicted to have signal peptides using SignalP4 software, and 75 were confirmed in previous studies. This study, for the first time, comprehensively profiled and functionally annotated the BAT proteome. This study will be helpful for future studies focused on biomarker identification and BAT molecular mechanisms.
Asunto(s)
Tejido Adiposo Pardo/metabolismo , Anotación de Secuencia Molecular , Proteoma/metabolismo , Proteómica , Tejido Adiposo Pardo/química , Animales , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Bases de Datos de Proteínas , Femenino , Ratones , Ratones Endogámicos C57BL , Anotación de Secuencia Molecular/métodos , Proteoma/análisis , Proteómica/métodos , Espectrometría de Masas en TándemRESUMEN
AIM: To survey glutathione (GSH) S-transferase (GST) isoforms in mitochondria and to reveal the isoforms' biological significance in diabetic mice. METHODS: The presence of GSTs in mouse liver mitochondria was systematically screened by two proteomic approaches, namely, GSH affinity chromatography/two dimensional electrophoresis (2DE/MALDI TOF/TOF MS) and SDS-PAGE/LC ESI MS/MS. The proteomic results were further confirmed by Western blotting using monoclonal antibodies against GSTs. To evaluate the liver mitochondrial GSTs quantitatively, calibration curves were generated by the loading amounts of individual recombinant GST protein vs the relative intensities elicited from the Western blotting. An extensive comparison of the liver mitochondrial GSTs was conducted between normal and db/db diabetic mice. Student's t test was adopted for the estimation of regression and significant difference. RESULTS: Using GSH affinity/2DE/MALDI TOF/TOF MS, three GSTs, namely, alpha3, mu1 and pi1, were identified; whereas five GSTs, alpha3, mu1, pi1, kappa1 and zeta1, were detected in mouse liver mitochondria using SDS-PAGE/LC ESI MS/MS, of these GSTs, GST kappa1 was reported as a specific mitochondrial GST. The R² values of regression ranged between values of about 0.86 and 0.98, which were acceptable for the quantification. Based on the measurement of the GST abundances in liver mitochondria of normal and diabetic mice, the four GSTs, alpha3, kappa1, mu1 and zeta1, were found to be almost comparable between the two sets of animals, whereas, lower GST pi1 was detected in the diabetic mice compared with normal ones, the signal of Western blotting in control and db/db diabetic mice liver mitochondria is 134.61 ± 53.84 vs 99.74 ± 46.2, with P < 0.05. CONCLUSION: Our results indicate that GSTs exist widely in mitochondria and its abundances of mitochondrial GSTs might be tissue-dependent and disease-related.