Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
PLoS Pathog ; 15(2): e1007558, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30726286

RESUMEN

Viral entry into the host cell is the first step towards successful infection. Viral entry starts with virion attachment, and binding to receptors. Receptor binding viruses either directly release their genome into the cell, or enter cells through endocytosis. For DNA viruses and a few RNA viruses, the endocytosed viruses will transport from cytoplasm into the nucleus followed by gene expression. Receptors on the cell membrane play a crucial role in viral infection. Although several attachment factors, or candidate receptors, for the infection of white spot syndrome virus (WSSV) were identified in shrimp, the authentic entry receptors for WSSV infection and the intracellular signaling triggering by interaction of WSSV with receptors remain unclear. In the present study, a receptor for WSSV infection in kuruma shrimp, Marsupenaeus japonicus, was identified. It is a member of the immunoglobulin superfamily (IgSF) with a transmembrane region, and is similar to the vertebrate polymeric immunoglobulin receptor (pIgR); therefore, it was designated as a pIgR-like protein (MjpIgR for short). MjpIgR was detected in all tissues tested, and its expression was significantly induced by WSSV infection at the mRNA and protein levels. Knockdown of MjpIgR, and blocking MjpIgR with its antibody inhibited WSSV infection in shrimp and overexpression of MjpIgR facilitated the invasion of WSSV. Further analyses indicated that MjpIgR could independently render non-permissive cells susceptible to WSSV infection. The extracellular domain of MjpIgR interacts with envelope protein VP24 of WSSV and the intracellular domain interacts with calmodulin (MjCaM). MjpIgR was oligomerized and internalized following WSSV infection and the internalization was associated with endocytosis of WSSV. The viral internalization facilitating ability of MjpIgR could be blocked using chlorpromazine, an inhibitor of clathrin dependent endocytosis. Knockdown of Mjclathrin and its adaptor protein AP-2 also inhibited WSSV internalization. All the results indicated that MjpIgR-mediated WSSV endocytosis was clathrin dependent. The results suggested that MjpIgR is a WSSV receptor, and that WSSV enters shrimp cells via the pIgR-CaM-Clathrin endocytosis pathway.


Asunto(s)
Penaeidae/inmunología , Receptores de Inmunoglobulina Polimérica/inmunología , Virus del Síndrome de la Mancha Blanca 1/metabolismo , Animales , Acuicultura/métodos , Virus ADN , Endocitosis , Penaeidae/metabolismo , Penaeidae/patogenicidad , Unión Proteica , Receptores de Inmunoglobulina Polimérica/metabolismo , Proteínas del Envoltorio Viral , Internalización del Virus , Replicación Viral , Virus del Síndrome de la Mancha Blanca 1/patogenicidad
2.
PLoS Pathog ; 13(9): e1006626, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28931061

RESUMEN

C-type lectins (CTLs) are characterized by the presence of a C-type carbohydrate recognition domain (CTLD) that by recognizing microbial glycans, is responsible for their roles as pattern recognition receptors in the immune response to bacterial infection. In addition to the CTLD, however, some CTLs display additional domains that can carry out effector functions, such as the collagenous domain of the mannose-binding lectin. While in vertebrates, the mechanisms involved in these effector functions have been characterized in considerable detail, in invertebrates they remain poorly understood. In this study, we identified in the kuruma shrimp (Marsupenaeus japonicus) a structurally novel CTL (MjCC-CL) that in addition to the canonical CTLD, contains a coiled-coil domain (CCD) responsible for the effector functions that are key to the shrimp's antibacterial response mediated by antimicrobial peptides (AMPs). By the use of in vitro and in vivo experimental approaches we elucidated the mechanism by which the recognition of bacterial glycans by the CTLD of MjCC-CL leads to activation of the JAK/STAT pathway via interaction of the CCD with the surface receptor Domeless, and upregulation of AMP expression. Thus, our study of the shrimp MjCC-CL revealed a striking functional difference with vertebrates, in which the JAK/STAT pathway is indirectly activated by cell death and stress signals through cytokines or growth factors. Instead, by cross-linking microbial pathogens with the cell surface receptor Domeless, a lectin directly activates the JAK/STAT pathway, which plays a central role in the shrimp antibacterial immune responses by upregulating expression of selected AMPs.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Crustáceos/metabolismo , Lectinas Tipo C/metabolismo , Transducción de Señal , Animales , Proteínas de Artrópodos/inmunología , Crustáceos/microbiología , ADN Complementario/genética , Quinasas Janus/metabolismo , Lectinas Tipo C/química , Receptores de Reconocimiento de Patrones/metabolismo , Factores de Transcripción STAT/metabolismo , Regulación hacia Arriba
3.
Fish Shellfish Immunol ; 87: 371-378, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30703548

RESUMEN

Thymosin hormones, which were shown to be involved in immune system development and differentiation in previous studies, have antimicrobial functions in different animals. Zebrafish are a useful model for immunology research. Although thymosin has been reported to be involved in the embryonic development of zebrafish, it is necessary to uncover the antimicrobial function of thymosin in zebrafish. In this study, we expressed thymosin ß (Tß) in zebrafish in vitro and studied its antimicrobial function. The Tß protein consists of 45 amino acids and is conserved among its family members, especially the actin-binding motif (LKKTET). Tß was expressed in all tested tissues and was highly expressed in the brain, liver and hindgut. After Aeromonas hydrophila challenge, the Tß transcript level increased in the skin, liver, kidney, spleen, thymus, foregut, gills and midgut. Purified recombinant thymosin ß (rTß) protein was used to study the antimicrobial mechanism. rTß could inhibit the growth of Staphylococcus aureus, Aeromonas hydrophila, Vibrio anguillarum, Pseudomonas aeruginosa and Klebsiella pneumoniae. rTß also binds to and agglutinates certain bacteria. Further study showed that rTß could combine with the polysaccharides from gram-negative and gram-positive bacterial walls. All results suggested that the Tß of zebrafish plays a significant role in innate antibacterial immune responses.


Asunto(s)
Proteínas de Peces/inmunología , Inmunidad Innata/fisiología , Timosina/inmunología , Pez Cebra/inmunología , Aeromonas hydrophila/fisiología , Animales , Enfermedades de los Peces/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria
4.
PLoS Pathog ; 12(12): e1006127, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28027319

RESUMEN

Scavenger receptors are an important class of pattern recognition receptors that play several important roles in host defense against pathogens. The class C scavenger receptors (SRCs) have only been identified in a few invertebrates, and their role in the immune response against viruses is seldom studied. In this study, we firstly identified an SRC from kuruma shrimp, Marsupenaeus japonicus, designated MjSRC, which was significantly upregulated after white spot syndrome virus (WSSV) challenge at the mRNA and protein levels in hemocytes. The quantity of WSSV increased in shrimp after knockdown of MjSRC, compared with the controls. Furthermore, overexpression of MjSRC led to enhanced WSSV elimination via phagocytosis by hemocytes. Pull-down and co-immunoprecipitation assays demonstrated the interaction between MjSRC and the WSSV envelope protein. Electron microscopy observation indicated that the colloidal gold-labeled extracellular domain of MjSRC was located on the outer surface of WSSV. MjSRC formed a trimer and was internalized into the cytoplasm after WSSV challenge, and the internalization was strongly inhibited after knockdown of Mjß-arrestin2. Further studies found that Mjß-arrestin2 interacted with the intracellular domain of MjSRC and induced the internalization of WSSV in a clathrin-dependent manner. WSSV were co-localized with lysosomes in hemocytes and the WSSV quantity in shrimp increased after injection of lysosome inhibitor, chloroquine. Collectively, this study demonstrated that MjSRC recognized WSSV via its extracellular domain and invoked hemocyte phagocytosis to restrict WSSV systemic infection. This is the first study to report an SRC as a pattern recognition receptor promoting phagocytosis of a virus.


Asunto(s)
Penaeidae/inmunología , Penaeidae/virología , Fagocitosis/inmunología , Receptores Depuradores de Clase C/inmunología , Replicación Viral/fisiología , Virus del Síndrome de la Mancha Blanca 1 , Animales , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Inmunohistoquímica , Inmunoprecipitación , Microscopía Electrónica de Transmisión , Receptores de Reconocimiento de Patrones/inmunología
5.
J Biol Chem ; 291(14): 7488-504, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26846853

RESUMEN

The Toll signaling pathway plays an important role in the innate immunity ofDrosophila melanogasterand mammals. The activation and termination of Toll signaling are finely regulated in these animals. Although the primary components of the Toll pathway were identified in shrimp, the functions and regulation of the pathway are seldom studied. We first demonstrated that the Toll signaling pathway plays a central role in host defense againstStaphylococcus aureusby regulating expression of antimicrobial peptides in shrimp. We then found that ß-arrestins negatively regulate Toll signaling in two different ways. ß-Arrestins interact with the C-terminal PEST domain of Cactus through the arrestin-N domain, and Cactus interacts with the RHD domain of Dorsal via the ankyrin repeats domain, forming a heterotrimeric complex of ß-arrestin·Cactus·Dorsal, with Cactus as the bridge. This complex prevents Cactus phosphorylation and degradation, as well as Dorsal translocation into the nucleus, thus inhibiting activation of the Toll signaling pathway. ß-Arrestins also interact with non-phosphorylated ERK (extracellular signal-regulated protein kinase) through the arrestin-C domain to inhibit ERK phosphorylation, which affects Dorsal translocation into the nucleus and phosphorylation of Dorsal at Ser(276)that impairs Dorsal transcriptional activity. Our study suggests that ß-arrestins negatively regulate the Toll signaling pathway by preventing Dorsal translocation and inhibiting Dorsal phosphorylation and transcriptional activity.


Asunto(s)
Arrestinas/inmunología , Proteínas de Artrópodos/inmunología , Penaeidae/inmunología , Transducción de Señal/inmunología , Staphylococcus aureus/inmunología , Receptores Toll-Like/inmunología , Transporte Activo de Núcleo Celular/inmunología , Animales , Núcleo Celular/inmunología , Proteínas de Unión al ADN/inmunología , Quinasas MAP Reguladas por Señal Extracelular/inmunología , Fosforilación/inmunología , beta-Arrestinas
6.
Fish Shellfish Immunol ; 61: 130-137, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28027987

RESUMEN

Leucine rich repeat (LRR) motif exists in many immune receptors of animals and plants. Most LRR containing (LRRC) proteins are involved in protein-ligand and protein-protein interaction, but the exact functions of most LRRC proteins were not well-studied. In this study, an LRRC protein was identified from kuruma shrimp Marsupenaeus japonicus, and named as MjLRRC1. MjLRRC1 was consistently expressed in different tissues of normal shrimp with higher expression in gills and stomach. At the transcriptional level, there were no significant changes of MjLRRC1 after injection of Vibrio anguillarum or Staphylococcus aureus in gills and hepatopancreas. While in V. anguillarum oral infection, MjLRRC1 was upregulated in stomach but not in intestine. The recombinant MjLRRC1 protein could bind to Gram-positive and Gram-negative bacteria, bacterial cell wall components including peptidoglycan, lipoteichoic acid, and lipopolysaccharide. MjLRRC1 regulated the expression of some antimicrobial peptide (AMP) genes and participated in bacteria clearance of stomach. All these results suggested that MjLRRC1 might play important roles in antibacterial immune response of kuruma shrimp.


Asunto(s)
Proteínas de Artrópodos/genética , Inmunidad Innata , Penaeidae/genética , Penaeidae/inmunología , Proteínas/genética , Animales , Antibacterianos/metabolismo , Proteínas de Artrópodos/química , Proteínas de Artrópodos/metabolismo , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/fisiología , Proteínas Repetidas Ricas en Leucina , Especificidad de Órganos , Penaeidae/metabolismo , Penaeidae/microbiología , Proteínas/química , Proteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de Proteína , Regulación hacia Arriba , Vibrio/fisiología
7.
Fish Shellfish Immunol ; 70: 416-425, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28916357

RESUMEN

Myeloid leukemia factor (MLF) plays an important role in development, cell cycle, myeloid differentiation, and regulates the RUNX transcription factors. However, the function of MLF in immunity is still unclear. In this study, an MLF was identified and characterized in kuruma shrimp Marsupenaeus japonicus, and named as MjMLF. The full-length cDNA of MjMLF contained 1111 nucleotides, which had an opening reading frame of 816 bp encoding a protein of 272 amino acids with an MLF1-interacting protein domain. MjMLF could be ubiquitously detected in different tissues of shrimp at the transcriptional level. The expression pattern analysis showed that MjMLF could be upregulated in shrimp hemocytes and hepatopancreas after white spot syndrome virus challenge. The RNA interference and protein injection assay showed that MjMLF could inhibit WSSV replication in vivo. Flow cytometry assay showed that MjMLF could induce hemocytes apoptosis which functioned in the shrimp antiviral reaction. All the results suggested that MjMLF played an important role in the antiviral immune reaction of kuruma shrimp. The research indicated that MjMLF might function as a novel regulator to inhibit WSSV replication in shrimp.


Asunto(s)
Proteínas de Artrópodos/genética , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Penaeidae/genética , Penaeidae/inmunología , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/metabolismo , Secuencia de Bases , Filogenia , Alineación de Secuencia , Virus del Síndrome de la Mancha Blanca 1/fisiología
8.
Fish Shellfish Immunol ; 67: 254-262, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28602682

RESUMEN

Scavenger receptors (SRs) comprise a large family of structurally diverse glycoproteins located on the cell membrane and function as pattern-recognition receptors (PRRs) participating in innate immunity in different species. Class C scavenger receptor (SRC) has been only identified in invertebrates and its biological functions still need to be researched. In this study, we characterized the anti-bacterial function of a SRC from kuruma shrimp Marsupenaeus japonicus (MjSRC). The mRNA level of MjSRC was up-regulated significantly in hemocytes of kuruma shrimp challenged by Vibrio anguillarum or Staphylococcus aureus. The recombinant extracellular domains (MAM and CCP domains) of MjSRC have the ability of binding different bacteria and glycans in vitro. After knockdown of MjSRC, the bacterial clearance ability and phagocytic rate of hemocyte decreased significantly in vivo. Meanwhile, overexpression of MjSRC in shrimp enhanced the clearance ability and phagocytic rate of hemocytes. Further study found that MjSRC could regulate the expression of several antimicrobial peptides (AMPs). All these results indicate that MjSRC plays important roles in antibacterial immunity in kuruma shrimp by enhancing hemocyte phagocytosis and AMP expression.


Asunto(s)
Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Penaeidae/genética , Penaeidae/inmunología , Receptores Depuradores/genética , Receptores Depuradores/inmunología , Secuencia de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/inmunología , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Secuencia de Bases , Hemocitos/inmunología , Fagocitosis , Filogenia , Polisacáridos/farmacología , Receptores Depuradores/química , Alineación de Secuencia/veterinaria , Staphylococcus aureus/fisiología , Vibrio/fisiología
9.
Fish Shellfish Immunol ; 56: 473-482, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27492125

RESUMEN

The suppressor of cytokine signaling (SOCS) family is a kind of negative regulators in the Janus kinase/signal transducer and activator of transcription (Jak/Stat) pathway in mammals and Drosophila. In kuruma shrimp, Marsupenaeus japonicus, SOCS2 is identified and its expression can be stimulated by peptidoglycan and polycytidylic acid. However, if SOCS2 participates in regulating Jak/Stat pathway in shrimp still needs further study. In this study, SOCS2 with Src homology 2 domain and SOCS box was identified in kuruma shrimp, M. japonicus. SOCS2 existed in hemocytes, heart, hepatopancreas, gills, stomach, and intestine, the expression of SOCS2 was upregulated significantly in the hemocytes and intestine of shrimp challenged with Vibrio anguillarum at 6 h. To analyze SOCS2 function in shrimp immunity, bacterial clearance and survival rate were analyzed after knockdown of SOCS2 in shrimp challenged with V. anguillarum. Results showed that bacterial clearance increased, and the survival rate improved significantly comparing with controls. The SOCS2 was expressed in Escherichia coli and the recombinant SOCS2 was injected into shrimp, and Stat phosphorylation and translocation were analyzed. The result showed that "overexpression" of SOCS2 declined Stat phosphorylation level and inhibited Stat translocation into the nucleus. After knockdown of SOCS2 in shrimp prior to V. anguillarum infection, the expression level of antimicrobial peptides, including anti-lipopolysaccharide factors C1, C2 and D1, and Crustin I was upregulated significantly, and the expression of the AMPs was declined after recombinant SOCS2 injection. The SOCS2 expression was also decreased in Stat-knockdown shrimp challenged by V. anguillarum at 6 and 12 h. Therefore, SOCS2 negatively regulates the AMP expression by inhibiting Stat phosphorylation and translocation into nucleus in shrimp, meanwhile, SOCS2 expression was also regulated by Jak/Stat pathway.


Asunto(s)
Proteínas de Artrópodos/genética , Penaeidae/genética , Penaeidae/inmunología , Proteínas Supresoras de la Señalización de Citocinas/genética , Vibrio/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/metabolismo , Secuencia de Bases , Clonación Molecular , ADN Complementario/genética , ADN Complementario/metabolismo , Penaeidae/microbiología , Filogenia , Proteínas Supresoras de la Señalización de Citocinas/química , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Activación Transcripcional
10.
Fish Shellfish Immunol ; 54: 489-98, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27142936

RESUMEN

Lysin motif (LysM) is a peptidoglycan and chitin-binding motif with multiple functions in bacteria, plants, and animals. In this study, a novel LysM and putative peptidoglycan-binding domain-containing protein was cloned from kuruma shrimp (Marsupenaeus japonicus) and named as MjLPBP. The cDNA of MjLPBP contained 1010 nucleotides with an open reading frame of 834 nucleotides encoding a protein of 277 amino acid residues. The deduced protein contained a Lysin motif and a transmembrane region, with a calculated molecular mass of 31.54 kDa and isoelectric point of 8.61. MjLPBP was ubiquitously distributed in different tissues of shrimp at the mRNA level. Time course expression assay showed that MjLPBP was upregulated in hemocytes of shrimp challenged with Vibrio anguillarum or Staphylococcus aureus. MjLPBP was also upregulated in hepatopancreas after white spot syndrome virus and bacteria challenge. The recombinant protein of MjLPBP could bind to some Gram-positive and Gram-negative bacteria and yeast. Further study found that rMjLPBP bound to bacterial cell wall components, including peptidoglycans, lipoteichoic acid, lipopolysaccharide, and chitin. The induction of several antimicrobial peptide genes and phagocytosis-related gene, such as anti-lipopolysaccharide factors and myosin, was depressed after knockdown of MjLPBP. MjLPBP could facilitate V. anguillarum clearance in vivo. All the results indicated that MjLPBP might play an important role in the innate immunity of shrimp.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas de Artrópodos/metabolismo , Proteínas Portadoras/metabolismo , Inmunidad Innata , Penaeidae/genética , Penaeidae/inmunología , Secuencia de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/genética , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Penaeidae/microbiología , Filogenia , Alineación de Secuencia , Vibrio/inmunología , Vibrio/fisiología
11.
Fish Shellfish Immunol ; 47(1): 63-73, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26314524

RESUMEN

Intestinal innate immune response is an important defense mechanism of animals and humans against external pathogens. The mechanism of microbiota homeostasis in host intestines has been well studied in mammals and Drosophila. The reactive oxygen species (ROS) and antimicrobial peptides have been reported to play important roles in homeostasis. However, how to maintain the microbiota homeostasis in crustacean intestine needs to be elucidated. In this study, we identified a novel catalase (MjCAT) involved in ROS elimination in kuruma shrimp, Marsupenaeus japonicus. MjCAT mRNA was widely distributed in hemocytes, heart, hepatopancreas, gills, stomach, and intestine. After the shrimp were challenged with pathogenic bacteria via oral infection, the expression level of MjCAT was upregulated, and the enzyme activity was increased in the intestine. ROS level was also increased in the intestine at early time after oral infection and recovered rapidly. When MjCAT was knocked down by RNA interference (RNAi), high ROS level maintained longer time, and the number of bacteria number was declined in the shrimp intestinal lumen than those in the control group, but the survival rate of the MjCAT-RNAi shrimp was declined. Further study demonstrated that the intestinal villi protruded from epithelial lining of the intestinal wall were damaged by the high ROS level in MjCAT-knockdown shrimp. These results suggested that MjCAT participated in the intestinal host-microbe homeostasis by regulating ROS level.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Catalasa/metabolismo , Inmunidad Innata , Penaeidae/enzimología , Penaeidae/inmunología , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Secuencia de Bases , Catalasa/química , Catalasa/genética , Microbioma Gastrointestinal , Homeostasis , Intestinos/inmunología , Penaeidae/genética , Penaeidae/microbiología , Filogenia , Especies Reactivas de Oxígeno/metabolismo , Alineación de Secuencia
12.
J Virol ; 87(23): 12756-65, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24049173

RESUMEN

Prohibitins (PHBs) are ubiquitously expressed conserved proteins in eukaryotes that are associated with apoptosis, cancer formation, aging, stress responses, cell proliferation, and immune regulation. However, the function of PHBs in crustacean immunity remains largely unknown. In the present study, we identified a PHB in Procambarus clarkii red swamp crayfish, which was designated PcPHB1. PcPHB1 was widely distributed in several tissues, and its expression was significantly upregulated by white spot syndrome virus (WSSV) challenge at the mRNA level and the protein level. These observations prompted us to investigate the role of PcPHB1 in the crayfish antiviral response. Recombinant PcPHB1 (rPcPHB1) significantly reduced the amount of WSSV in crayfish and the mortality of WSSV-infected crayfish. The quantity of WSSV in PcPHB1 knockdown crayfish was increased compared with that in the controls. The effects of RNA silencing were rescued by rPcPHB1 reinjection. We further confirmed the interaction of PcPHB1 with the WSSV envelope proteins VP28, VP26, and VP24 using pulldown and far-Western overlay assays. Finally, we observed that the colloidal gold-labeled PcPHB1 was located on the outer surface of the WSSV, which suggests that PcPHB1 specifically binds to the envelope proteins of WSSV. VP28, VP26, and VP24 are structural envelope proteins and are essential for attachment and entry into crayfish cells. Therefore, PcPHB1 exerts its anti-WSSV effect by binding to VP28, VP26, and VP24, preventing viral infection. This study is the first report on the antiviral function of PHB in the innate immune system of crustaceans.


Asunto(s)
Astacoidea/metabolismo , Astacoidea/virología , Proteínas Represoras/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Virus del Síndrome de la Mancha Blanca 1/metabolismo , Animales , Astacoidea/genética , Prohibitinas , Unión Proteica , Proteínas Represoras/genética , Mariscos/virología , Proteínas del Envoltorio Viral/genética , Virus del Síndrome de la Mancha Blanca 1/genética
13.
Fish Shellfish Immunol ; 39(2): 296-304, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24830772

RESUMEN

Fibrinogen-related proteins (FREPs) in invertebrates have important functions in innate immunity. In this study, the cDNA of FREP was identified from the kuruma shrimp Marsupenaeus japonicus (MjFREP2). The full-length cDNA of MjFREP2 is 1138 bp with an open reading frame of 954 bp that encodes a 317-amino acid protein comprising a signal peptide and a fibrinogen-like domain. MjFREP2 could be detected in hemocytes, heart, hepatopancreas, gills, stomach, and intestines. MjFREP2 could also be upregulated in hemocytes after Vibrio anguillarum and Staphylococcus aureus challenge. Agglutination and binding assay results revealed that the recombinant MjFREP2 bound to bacteria and polysaccharides. Immunocytochemical analysis results showed that MjFREP2 proteins were mainly distributed in the cytoplasm of hemocytes from unchallenged shrimp and transported to the membrane or secreted out of the cell after V. anguillarum or S. aureus challenge. The secreted MjFREP2 bound to the bacteria presented in shrimp hemolymph. The overexpression of MjFREP2 could enhance bacterial clearance by inducing the phagocytosis of hemocytes. This ability was impaired by knockdown of MjFREP2 with RNA interference. The cumulative mortality of MjFREP2-silenced shrimp was significantly higher than that of the control shrimp. These results suggested that MjFREP2 has an important function in the antibacterial immunity of M. japonicus.


Asunto(s)
Fibrinógeno/inmunología , Regulación de la Expresión Génica/inmunología , Inmunoglobulinas/inmunología , Penaeidae/inmunología , Penaeidae/microbiología , Staphylococcus aureus/inmunología , Vibrio/inmunología , Animales , Biología Computacional , Cartilla de ADN , ADN Complementario/genética , Hemocitos/inmunología , Inmunoglobulinas/genética , Sistemas de Lectura Abierta/genética , Fagocitosis/inmunología , Estructura Terciaria de Proteína , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
Front Immunol ; 9: 2392, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30416501

RESUMEN

Protein inhibitor of activated STAT (PIAS) proteins are activation-suppressing proteins for signal transducer and activator of transcription (STAT), which involves gene transcriptional regulation. The inhibitory mechanism of PIAS proteins in the Janus kinase (JAK)/STAT signaling pathway has been well studied in mammals and Drosophila. However, the roles of PIAS in crustaceans are unclear. In the present study, we identified PIAS in kuruma shrimp Marsupenaeus japonicus and found that its relative expression could be induced by Vibrio anguillarum stimulation. To explore the function of PIAS in shrimp infected with V. anguillarum, we performed an RNA interference assay. After knockdown of PIAS expression in shrimp subjected to V. anguillarum infection, bacterial clearance was enhanced and the survival rate increased compared with those in the control shrimp (dsGFP injection). Simultaneously, the expression levels of antimicrobial peptides (AMPs), including anti-lipopolysaccharide factor (ALF) A1, C1, C2, and CruI-1, increased. Further study revealed that knockdown of PIAS also enhanced STAT phosphorylation and translocation. Pulldown assay indicated that PIAS interacts with activated STAT in shrimp. In conclusion, PIAS negatively regulates JAK/STAT signaling by inhibiting the phosphorylation and translocation of STAT through the interaction between PIAS and STAT, which leads to the reduction of AMP expression in shrimp. Our results revealed a new mechanism of PIAS-mediated gene regulation of the STAT signal pathway.


Asunto(s)
Quinasas Janus/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Transducción de Señal , Animales , Biología Computacional , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/inmunología , Penaeidae/genética , Penaeidae/inmunología , Penaeidae/metabolismo , Penaeidae/microbiología , Fosforilación , Filogenia , Proteínas Inhibidoras de STAT Activados/clasificación , Proteínas Inhibidoras de STAT Activados/genética , Transporte de Proteínas
15.
Front Immunol ; 8: 1151, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28979261

RESUMEN

The Toll pathway is essential for inducing an immune response to defend against bacterial invasion in vertebrates and invertebrates. Although Toll receptors and the transcription factor Dorsal were identified in different shrimp, relatively little is known about how the Toll pathway is activated or the function of the pathway in shrimp antibacterial immunity. In this study, three Tolls (Toll1-3) and the Dorsal were identified in Marsupenaeus japonicus. The Toll pathway can be activated by Gram-positive (G+) and Gram-negative (G-) bacterial infection. Unlike Toll binding to Spätzle in Drosophila, shrimp Tolls could directly bind to pathogen-associated molecular patterns from G+ and G- bacteria, resulting in Dorsal translocation into nucleus to regulate the expression of different antibacterial peptides (AMPs) in the clearance of infected bacteria. These findings suggest that shrimp Tolls are pattern recognition receptors and the Toll pathway in shrimp is different from the Drosophila Toll pathway but identical with the mammalian Toll-like receptor pathway in its activation and antibacterial functions.

16.
Sci Rep ; 6: 35808, 2016 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-27782165

RESUMEN

Impaired phosphatase activity leads to the persistent activation of signal transducers and activators of transcription (Stat). In mammals, Stat family members are often phosphorylated or dephosphorylated by the same enzymes. To date, only one Stat similar to mammalian Stat5a/b has been found in crustaceans and there have been few studies in Stat signal regulation in crustaceans. Here, we report that ß-arrestin1 interacts with TC45 (45-kDa form of T cell protein tyrosine phosphatase) in the nucleus to attenuate Stat signaling by promoting dephosphorylation of Stat. Initially, we showed that Stat translocates into the nucleus to induce antimicrobial peptide (AMP) expression after bacterial infection. ßArr1 enters the nucleus of hemocytes and recruits TC45 to form the ßarr1-TC45-Stat complex, which dephosphorylates Stat efficiently. The interaction of TC45 with Stat decreased and Stat phosphorylation increased in ßarr1-silenced shrimp (Marsupenaeus japonicus) after challenge with Vibrio anguillarum. ßArr1 directly interacts with Stat in nucleus and accelerates Stat dephosphorylation by recruiting TC45 after V. anguillarum challenge. Further study showed that ßarr1 and TC45 also affect AMP expression, which is regulated by Stat. Therefore, ßarr1 and TC45 are involved in the anti-V. anguillarum immune response by regulating Stat activity negatively to decrease AMP expression in shrimp.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Factores de Transcripción STAT/metabolismo , beta-Arrestina 1/metabolismo , Animales , Chlorocebus aethiops , Decápodos/metabolismo , Mucosa Intestinal/metabolismo , Fosforilación , Unión Proteica , Dominios Proteicos , Proteína Tirosina Fosfatasa no Receptora Tipo 2/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Factores de Transcripción STAT/antagonistas & inhibidores , Factores de Transcripción STAT/genética , Transducción de Señal , Vibrio/fisiología , beta-Arrestina 1/antagonistas & inhibidores , beta-Arrestina 1/genética
17.
Dev Comp Immunol ; 55: 80-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26493016

RESUMEN

Akirin is a recently discovered nuclear factor that plays important roles in innate immune responses. Akirin is a positive regulator of the NF-κB factor of the Drosophila immune deficiency (IMD) pathway, which shares extensive similarities with the mammalian tumor necrosis factor receptor (TNFR) signaling pathway. However, some studies found that the NF-κB transcriptional targets were also strongly repressed in akirin2 knockout mice following TLR, IL-1ß and TNFα treatment. Therefore, the function of Akirin in the immune response requires further clarification. In this study, an Akirin homolog in the kuruma shrimp (Marsupenaeus japonicus) was identified. It was mainly expressed in hemocytes, heart and intestines. The expression of Akirin was upregulated by challenge with the Gram-negative bacterium Vibrio anguillarum, but was not significantly influenced by challenge with the Gram-positive bacterium Staphylococcus aureus. Knockdown of Akirin suppressed the expression of several IMD-Relish target effectors (antimicrobial peptides, AMPs). The limited regulating spectrum of Akirin might be associated with Bap60, a component of the Brahma (SWI/SNF) ATP-dependent chromatin-remodeling complex. In addition, Akirin also interacts with 14-3-3, which inhibited the expression of Akirin-target AMPs. The results suggested that Akirin is involved in the IMD-Relish pathway by interacting with Relish. The interaction of Akirin with Bap60 positively regulated the Akirin-Relish function, and its interaction with 14-3-3 negatively regulated the Akirin-Relish function.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas de Drosophila/metabolismo , Pandalidae/inmunología , Proteínas Represoras/metabolismo , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Factores de Transcripción/metabolismo , Vibriosis/inmunología , Vibrio/inmunología , Secuencia de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Ensamble y Desensamble de Cromatina/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/inmunología , Técnicas de Silenciamiento del Gen , Ratones , Datos de Secuencia Molecular , FN-kappa B/metabolismo , Proteínas Nucleares , Unión Proteica , Proteínas Represoras/genética
18.
Dev Comp Immunol ; 59: 153-63, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26845611

RESUMEN

The metazoan gut lumen harbors numerous microbial communities. Tolerance for high bacterial counts and maintenance of microbiota homeostasis remain insufficiently studied. In this study, we identified a novel dual oxidase (MjDUOX2) involved in reactive oxygen species (ROS) production in the kuruma shrimp Marsupenaeus japonicus. MjDUOX2 is a transmembrane protein with an N-signal peptide region (19 aa) and a peroxidase homology domain (PHD, 554 aa) in the extracellular region; seven transmembrane regions; and three EF (calcium-binding region) domains (110 aa), a FAD-binding domain (104 aa), and a NAD-binding domain (156 aa) in the intracellular region. The novel MjDUOX2 exhibits a relatively low similarity (26.84% identity) to a previously reported DUOX in the shrimp (designated as MjDUOX1). The mRNA of MjDUOXs was widely distributed in the hemocytes, heart, hepatopancreas, gills, stomach, and intestine. Oral infection of the shrimp with pathogenic bacteria upregulated the mRNA expression of MjDUOXs and increased the ROS level in the intestine. However, High ROS level could inhibit the expression of MjDUOXs in shrimp after Vibrio anguillarum infection. Knockdown of MjDUOXs by RNA interference (RNAi) decreased the ROS level, increased the bacterial count in the intestine, and decreased the survival rate of the MjDUOX-RNAi shrimp infected with V. anguillarum. These results suggest that MjDUOXs play an important role for microbiota homeostasis in intestine of shrimp.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Intestinos/microbiología , NADPH Oxidasas/inmunología , Penaeidae/microbiología , Especies Reactivas de Oxígeno/metabolismo , Vibriosis/inmunología , Secuencia de Aminoácidos , Animales , Carga Bacteriana/inmunología , Secuencia de Bases , Intestinos/inmunología , NADPH Oxidasas/genética , Penaeidae/genética , Penaeidae/inmunología , Unión Proteica/inmunología , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Vibrio/inmunología , Vibriosis/microbiología
19.
Dev Comp Immunol ; 49(2): 313-22, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25479014

RESUMEN

Crustins are cationic cysteine-rich antimicrobial peptides (AMPs) that contain multiple domains (glycine-rich, cysteine-rich, or proline-rich) at the N-terminus and whey acidic protein (WAP) domains at the C-terminus. Crustins have multiple functions, including protease inhibition and antimicrobial activity. Other functions of crustins need to be clarified. In this study, a novel crustin with a cysteine-rich region, and a single WAP domain, belonging to type I crustins, was identified in Marsupenaeus japonicus and designated as MjCru I-1. MjCru I-1 was expressed in various tissues. The expression of MjCru I-1 was upregulated in the hemocytes of shrimp challenged with bacteria. MjCru I-1 could bind to bacteria by binding to the cell wall molecules of the bacteria, such as lipopolysaccharide (LPS), peptidoglycan (PGN), and lipoteichoic acid (LTA). The synthesized WAP domain of MjCru I-1 but not synthesized Cys-rich domain has antibacterial and agglutinative activities. Scanning electron microscope assay showed that the bacterial cells treated with sMjCru I-1 appeared to be disrupted and cracked compared with those of the control samples. The knockdown of MjCru I-1 could reduce bacterial clearance and injection of MjCru I-1 could significantly increase the survival rate of shrimp infected with Vibrio anguillarum and Staphylococcus aureus compared with those of the control samples. Further study discovered that MjCru I-1 could increase the hemocyte phagocytosis against V. anguillarum and S. aureus. These results suggest that MjCru I-1 has dual functions, bactericidal and phagocytosis promoting activities, in the antibacterial immunity of shrimp.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Hemocitos/inmunología , Penaeidae/inmunología , Fagocitosis/inmunología , Secuencia de Aminoácidos , Animales , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacocinética , Secuencia de Bases , Pared Celular/metabolismo , Expresión Génica , Lipopolisacáridos/metabolismo , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Penaeidae/genética , Penaeidae/metabolismo , Peptidoglicano/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño , Proteínas Recombinantes/farmacología , Análisis de Secuencia de ADN , Staphylococcus aureus/inmunología , Ácidos Teicoicos/metabolismo , Regulación hacia Arriba , Vibrio/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA