Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Transl Med ; 22(1): 586, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902782

RESUMEN

The prevalence of papillary thyroid cancer (PTC) has been rising in recent years. Despite its relatively low mortality, PTC frequently metastasizes to lymph nodes and often recurs, posing significant health and economic burdens. The role of iodine in the pathogenesis and advancement of thyroid cancer remains poorly understood. Circular RNAs (circRNAs) are recognized to function as competing endogenous RNAs (ceRNAs) that modulate gene expression and play a role in various cancer stages. Consequently, this research aimed to elucidate the mechanism by which circRNA influences the impact of iodine on PTC. Our research indicates that high iodine levels can exacerbate the malignancy of PTC via the circ_0004851/miR-296-3p/FGF11 axis. These insights into iodine's biological role in PTC and the association of circRNA with the disease could pave the way for novel biomarkers and potentially effective therapeutic strategies to mitigate PTC progression.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Yodo , MicroARNs , ARN Circular , Cáncer Papilar Tiroideo , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Humanos , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/patología , Yodo/metabolismo , Línea Celular Tumoral , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Secuencia de Bases
2.
Angew Chem Int Ed Engl ; 62(48): e202313784, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37819255

RESUMEN

Infrared light driven photocatalytic reduction of atmospheric CO2 is challenging due to the ultralow concentration of CO2 (0.04 %) and the low energy of infrared light. Herein, we develop a metallic nickel-based metal-organic framework loaded with Pt (Pt/Ni-MOF), which shows excellent activity for thermal-photocatalytic conversion of atmospheric CO2 with H2 even under infrared light irradiation. The open Ni sites are beneficial to capture and activate atmospheric CO2 , while the photogenerated electrons dominate H2 dissociation on the Pt sites. Simultaneously, thermal energy results in spilling of the dissociated H2 to Ni sites, where the adsorbed CO2 is thermally reduced to CO and CH4 . The synergistic interplay of dual-active-sites renders Pt/Ni-MOF a record efficiency of 9.57 % at 940 nm for converting atmospheric CO2 , enables the procurement of CO2 to be independent of the emission sources, and improves the energy efficiency for trace CO2 conversion by eliminating the capture media regeneration and molecular CO2 release.

3.
J Assist Reprod Genet ; 39(12): 2819-2825, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36411395

RESUMEN

PURPOSE: To evaluate the association between body mass index (BMI) and pregnancy outcomes in women receiving intrauterine insemination (IUI) treatment. METHODS: The study included 6407 women undergoing 13,745 IUI cycles stratified by BMI. Cox regression was used to analyze the association between BMI and cumulative live births across multiple IUI cycles. A generalized estimating equation (GEE) was used to analyze the live birth rate per cycle. RESULTS: Compared with normal-weight women (n = 4563), underweight women (n = 990) had a lower cumulative pregnancy and live birth rate (20.71% vs 25.93% and17.17% vs 21.61%, respectively), while overweight women (n = 854) had a higher cumulative pregnancy and live birth rate (31.97%, 26.58%). Adjusted for confounders, the hazard ratio (HR) for achieving live birth following up to a maximum of four IUI cycles was 0.80 (95% CI: 0.67-0.95), comparing underweight with normal weight. In the GEE analyses, low BMI was also associated with a lower per-cycle birth rate (OR 0.79, 95% CI: 0.66-0.95), with adjustment for cycle-specific parameters, including ovarian stimulation, endometrial thickness, and follicular diameter. CONCLUSION: Low BMI is associated with poor IUI outcomes.


Asunto(s)
Inseminación Artificial , Delgadez , Embarazo , Humanos , Femenino , Estudios Retrospectivos , Índice de Masa Corporal , Índice de Embarazo , Nacimiento Vivo/epidemiología , Inducción de la Ovulación
4.
Angew Chem Int Ed Engl ; 57(21): 6073-6076, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29473991

RESUMEN

N2 fixation by the electrocatalytic nitrogen reduction reaction (NRR) under ambient conditions is regarded as a potential approach to achieve NH3 production, which still heavily relies on the Haber-Bosch process at the cost of huge energy and massive production of CO2 . A noble-metal-free Bi4 V2 O11 /CeO2 hybrid with an amorphous phase (BVC-A) is used as the cathode for electrocatalytic NRR. The amorphous Bi4 V2 O11 contains significant defects, which play a role as active sites. The CeO2 not only serves as a trigger to induce the amorphous structure, but also establishes band alignment with Bi4 V2 O11 for rapid interfacial charge transfer. Remarkably, BVC-A shows outstanding electrocatalytic NRR performance with high average yield (NH3 : 23.21 µg h-1 mg-1cat. , Faradaic efficiency: 10.16 %) under ambient conditions, which is superior to the Bi4 V2 O11 /CeO2 hybrid with crystalline phase (BVC-C) counterpart.

5.
Small ; 13(17)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28218454

RESUMEN

Novel amorphous vanadium oxide coated copper vanadium oxide (Cu11 V6 O26 /V2 O5 ) microspheres with 3D hierarchical architecture have been successfully prepared via a microwave-assisted solution method and subsequent annealing induced phase separation process. Pure Cu11 V6 O26 microspheres without V2 O5 coating are also obtained by an H2 O2 solution dissolving treatment. When evaluated as an anode material for lithium-ion batteries (LIBs), the as-synthesized hybrid exhibits large reversible capacity, excellent rate capability, and outstanding capacity self-recovery. Under the condition of high current density of 1 A g-1 , the 3D hierarchical Cu11 V6 O26 /V2 O5 hybrid maintains a reversible capacity of ≈1110 mA h g-1 . Combined electrochemical analysis and high-resolution transmission electron microscopy observation during cycling reveals that the amorphous V2 O5 coating plays an important role on enhancing the electrochemical performances and capacity self-recovery, which provides an active amorphous protective layer and abundant grain interfaces for efficient inserting and extracting of Li-ion. As a result, this new copper vanadium oxide hybrid is proposed as a promising anode material for LIBs.

6.
Inorg Chem ; 55(10): 4782-9, 2016 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-27135691

RESUMEN

The creation of a phase junction structure in photocatalysts is a wise approach to promote photocatalytic performance, as phase junctions possess the potential to inhibit the recombination of photoinduced charge carriers. Here, Bi4V2O11 nanofibers with an α-ß phase junction are fabricated via electrospinning with subsequent calcination. Electrospinning offers the opportunity to keep α-Bi4V2O11 from transforming into ß-Bi4V2O11 completely due to an electrospinning retardation effect, leading to the formation of an α-ß Bi4V2O11 phase junction. Furthermore, the α-ß Bi4V2O11 phase junction realizes a well-established type-II band alignment. Photoelectrochemical measurements and photoluminescence spectroscopic investigations demonstrate that the phase junction structure has a significant impact on the separation and transfer of photogenerated electrons and holes. Thus, the α-ß phase junction on Bi4V2O11 holds the key to achieving promoted efficiency in the photocatalysis process.

7.
Phys Chem Chem Phys ; 18(29): 19531-5, 2016 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-27389924

RESUMEN

C&N co-doped Co3O4 hollow nanofibres are prepared by combining the electrospinning technique and the hydrothermal method, which show a high reversible capacity and excellent cycling stability as anode materials for Li-ion batteries. DFT calculations give a good explanation for the experimentally enhanced conductivity in C&N co-doped Co3O4 hollow nanofibres.

8.
Inorg Chem ; 54(24): 11826-30, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26616241

RESUMEN

Wide-light absorption is important to semiconductors exploited in many applications such as photocatalysts, photovoltaic devices, and light-emitting diodes, which can effectively improve solar energy utilization. Especially for photocatalysts, the development and design of new semiconductors that harvest the whole-visible-light region (λ = 400-800 nm) is rarely reported, which is still a tremendous challenge up to now. Here we realize whole-visible-light absorption up to 900 nm for a semiconductor by means of construction of a mixed-valence Ag0.68V2O5, which results from an assistant effect of d-d transition. Ag0.68V2O5 serving as a photocatalyst obviously exhibits photoelectrochemical and photocatalytic properties. Our results provide a brand-new feasible design strategy to broaden the light absorption of semiconductors and highlight a route to further make the best use of the full solar spectrum.

9.
Phys Chem Chem Phys ; 17(2): 795-9, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25407471

RESUMEN

The prepared Ag2Ta4O11 photocatalyst exhibits durable activity for H2 production from water. We investigated the durability, inactivation and regeneration mechanism in depth. This work provides a new perspective and makes an important step for the research on Ag-based photocatalysts.

10.
Phys Chem Chem Phys ; 16(43): 23915-21, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25277949

RESUMEN

Constructing Ag-based photocatalysts by the incorporation of Ag(+) ions into metal/nonmetal oxides for removing organic pollutants is a recently developed strategy, but overcoming their own photocorrosion is still a tremendous challenge. In this work, an advanced Ag-based photocatalyst Ag2Ta4O11 is obtained by this strategy, which exhibits improved photocatalytic activity compared with Ta2O5 and the universality for degrading several organic dyes. Importantly, the Ag2Ta4O11 photocatalyst has outstanding durability and reusability, which indicates that it has potential application prospects for organic wastewater treatment in the printing and dyeing industry.

11.
Front Bioeng Biotechnol ; 12: 1347312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38333078

RESUMEN

The development of micro/nanorobots and their application in medical treatment holds the promise of revolutionizing disease diagnosis and treatment. In comparison to conventional diagnostic and treatment methods, micro/nanorobots exhibit immense potential due to their small size and the ability to penetrate deep tissues. However, the transition of this technology from the laboratory to clinical applications presents significant challenges. This paper provides a comprehensive review of the research progress in micro/nanorobotics, encompassing biosensors, diagnostics, targeted drug delivery, and minimally invasive surgery. It also addresses the key issues and challenges facing this technology. The fusion of micro/nanorobots with medical treatments is poised to have a profound impact on the future of medicine.

12.
J Colloid Interface Sci ; 630(Pt B): 224-234, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36327725

RESUMEN

Lattice strain is a new strategy for promoting photocatalytic activity in order to source more sustainable energy. Vacancy-induced strain is an effective tactic for lattice deformation. Herein, a CdS/Bi2S3 heterojunction structure containing sulfur vacancies (CdS/Bi2S3-VS) is synthesized by a one-step solvothermal method. When there are sulfur vacancies in the Bi2S3 lattice (Bi2S3-VS), the surrounding atoms move toward sulfur vacancies. This phenomenon lengthens the bonds between surrounding atoms, resulting in tensile stress. Strain engineering adjusts the energy band structure to reduce the interface barrier height, thus effectively improving the interface charge transfer rate. Moreover, density functional theory (DFT) calculations explore the influence of different strain levels on the band structure and Gibbs free energy. The strain-regulated band structure provides a new approach and effectively reduce the interface barrier.

13.
Oncol Lett ; 24(1): 206, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35720494

RESUMEN

Type 2 diabetes mellitus (T2DM) has an increased risk of cancer. In the present study, the relationship between T2DM and 13 types of cancer was analyzed and key methylation genes were searched. First, DNA methylation and mRNA expression were obtained data for T2DM and 13 types of cancer from The Cancer Genome Atlas and Gene Expression Omnibus. The t-test was used to screen the differentially methylated expression overlapping genes (DE-MGs) in T2DM and cancer on both methylation and expression levels. DE-MGs are weighted based on the methylation and projected into the human protein interaction network. The correlation between T2DM and each type of cancer was analyzed, and key genes were identified. The results showed that 293 DE-MGs were related to T2DM and 3307 were related to cancer. The network found that T2DM is more related to colorectal cancer (CRC) compare with the other 12 types of cancer. A total of 5 from 8 candidate genes were associated with CRC. A total of 28 clinical patients were used to validate these 5 genes. A CRC tissue sample was collected from each patient, as well as a paracancerous sample that served as a control. A total of 56 tissue samples were divided into 4 groups: control group, T2DM group, CRC group and T2DM with CRC group (combination group). Compared with the control group, the methylation level of adenylate cyclase 5 (ADCY5), neuregulin 1 and ELAV-like RNA-binding protein 4 in the combination group was significantly upregulated, and the mRNA level was significantly downregulated. Furthermore, based on the methylation level of ADCY5, the correlation coefficient between the combination group and the T2DM group was greater than that of the CRC group. In conclusion, T2DM is most likely to be associated with CRC among 13 common types of cancer based on methylation characteristics. An upregulated methylation of ADCY5 in T2DM may have a higher risk of CRC.

14.
Chem Commun (Camb) ; 58(11): 1772-1775, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35037930

RESUMEN

N-Doped biomass carbon fibers with surface encapsulated Co nanoparticles (Co/N-BCFs) are prepared by the in situ structure-directing effect of the Co-complex formed with 2,2-bipyridine. An electrolyzer equipped with a Co/N-BCFs electrode couple only needs a voltage of 1.31 V at 10 mA cm-2 for overall water-splitting, which is better than that of an integrated RuO2 and Pt/C couple.

15.
J Colloid Interface Sci ; 608(Pt 2): 1441-1448, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34742063

RESUMEN

Developing alternatives to noble metal electrocatalysts for hydrogen production via water splitting is a challenging task. Herein, a novel electrocatalyst with Ni nanoparticles disperesed on N-doped biomass carbon fibers (NBCFs) was prepared through a simple in-situ growth process using Ni-ethanediamine complex (NiC) as the structure-directing agent. The in-situ template effect of the NiC facilitated the formation of Ni-N bonds between the Ni nanoparticles and NBCFs, which not only prevented the aggregation and corrosion of the Ni nanoparticles, but also accelerated the electron transfer in the electrochemical reaction, thus improving the hydrogen evolution reaction (HER) activity of the electrocatalyst. As expected, the optimal Ni/NBCF-1-H2 electrocatalyst exhibited better HER activity over the entire pH range than the control Ni/NBCF-1-N2 and Ni/NBCF-1-NaBH4 samples. The HER overpotentials of the Ni/NBCF-1-H2 electrocatalyst were as low as 47, 56, and 100 mV in alkaline (pH = 13.8), acidic (pH = 0.3), and neutral (pH = 7.3) electrolytes, respectively at the current density of 10 mA cm-2. Meanwhile, the Ni/NBCF-1-H2 sample could run continuously for 100 h, exhibiting outstanding stability. This work provides a feasible method for developing efficient and cheap electrocatalysts derived from biomass carbon materials using the in-situ template technology.


Asunto(s)
Hidrógeno , Níquel , Biomasa , Fibra de Carbono , Concentración de Iones de Hidrógeno , Nitrógeno , Tecnología
16.
Front Immunol ; 13: 819680, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265076

RESUMEN

Graves ophthalmopathy (GO), a manifestation of Graves' disease, is an organ-specific autoimmune disease. Intravenous glucocorticoid therapy (ivGCs) is the first-line treatment for moderate-to-severe and active GO. However, ivGCs is only effective in 70%-80% of GO patients. Insensitive patients who choose 12-week ivGCs not only were delayed in treatment but also took the risk of adverse reactions of glucocorticoids. At present, there is still a lack of effective indicators to predict the therapeutic effect of ivGCs. Therefore, the purpose of this study is to find biomarkers that can determine the sensitivity of ivGCs before the formulation of treatment, and to clarify the mechanism of its regulation of ivGCs sensitivity. This study first characterized the miRNA profiles of plasma exosomes by miRNA sequencing to identify miRNAs differentially expressed between GO patients with significant improvement (SI) and non-significant improvement (NSI) after ivGCs treatment. Subsequently, we analyzed the function of the predicted target genes of differential miRNAs. According to the function of the target genes, we screened 10 differentially expressed miRNAs. An expanded cohort verification showed that compared with NSI patients, mir-885-3p was upregulated and mir-4474-3p and mir-615-3p were downregulated in the exosomes of SI patients. Based on statistical difference and miRNA function, mir-885-3p was selected for follow-up study. The in vitro functional analysis of exosomes mir-885-3p showed that exosomes from SI patients (SI-exo) could transfer mir-885-3p to orbital fibroblasts (OFs), upregulate the GRE luciferase reporter gene plasmid activity and the level of glucocorticoid receptor (GR), downregulate the level of inflammatory factors, and improve the glucocorticoid sensitivity of OFs. Moreover, these effects can be inhibited by the corresponding miR inhibitor. In addition, we found that high levels of mir-885-3p could inhibit the AKT/NFκB signaling pathway, upregulate the GRE plasmid activity and GR level, and downregulate the level of inflammatory factors of OFs. Moreover, the improvement of glucocorticoid sensitivity by mir-885-3p transmitted by SI-exo can also be inhibited by the AKT/NFκB agonist. Finally, through the in vivo experiment of the GO mouse model, we further determined the relationship between exosomes' mir-885-3p sequence, AKT/NFκB signaling pathway, and glucocorticoid sensitivity. As a conclusion, plasma exosomes deliver mir-885-3p and inhibit the AKT/NFκB signaling pathway to improve the glucocorticoid sensitivity of OFs. Exosome mir-885-3p can be used as a biomarker to determine the sensitivity of ivGCs in GO patients.


Asunto(s)
Exosomas , Oftalmopatía de Graves , MicroARNs , Animales , Exosomas/metabolismo , Estudios de Seguimiento , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Glucocorticoides/uso terapéutico , Oftalmopatía de Graves/tratamiento farmacológico , Oftalmopatía de Graves/genética , Oftalmopatía de Graves/metabolismo , Humanos , Ratones , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
17.
J Diabetes Complications ; 35(8): 107929, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33902999

RESUMEN

Diabetes mellitus (DM) has become a serious illness in the whole world. Until now, there is no effective cure for patients with DM. It is well known that the glucose level is one key factor to determine the progress of DM. It is also an important reference to carry out the accurate and timely treatment for patients with DM. In this article, the related biosensors technology that can be utilized to identify and predict glucose level are reviewed in detail, including the algorithms that can help to achieve numerical value of glucose level. Firstly, the biosensor technology based on the physiological fluids are illustrated, including blood, sweat, interstitial fluid, ocular fluid, and other available fluids. Secondly, the algorithms for achieving numerical value of glucose level are investigated, including the physiological model-based method and the machine learning-based method. Finally, the future development trend and challenges of glucose level monitoring are given and the conclusions are drawn.


Asunto(s)
Técnicas Biosensibles , Automonitorización de la Glucosa Sanguínea/instrumentación , Diabetes Mellitus , Algoritmos , Glucemia , Diabetes Mellitus/diagnóstico , Humanos , Tecnología
18.
Front Bioeng Biotechnol ; 9: 657699, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124019

RESUMEN

Diabetes mellitus impairs fracture healing and function of stem cells related to bone regeneration; thus, effective bone tissue engineering therapies can intervene with those dysfunctions. Nanohydroxyapatite/polyamide 66 (n-HA/PA66) scaffold has been used in fracture healing, whereas the low bioactivity limits its further application. Herein, we developed a novel bone morphogenetic protein-2- (BMP-2) and vascular endothelial growth factor- (VEGF) derived peptides-decorated n-HA/PA66 (BVHP66) scaffold for diabetic fracture. The n-HA/PA66 scaffold was functionalized by covalent grafting of BMP-2 and VEGF peptides to construct a dual peptide sustained-release system. The structural characteristics and peptide release profiles of BVHP66 scaffold were tested by scanning electron microscopy, Fourier transform infrared spectroscopy, and fluorescence microscope. Under high glucose (HG) condition, the effect of BVHP66 scaffold on rat bone marrow mesenchymal stem cells' (rBMSCs) adherent, proliferative, and differentiate capacities and human umbilical vein endothelial cells' (HUVECs) proliferative and tube formation capacities was assessed. Finally, the BVHP66 scaffold was applied to fracture of diabetic rats, and its effect on osteogenesis and angiogenesis was evaluated. In vitro, the peptide loaded on the BVHP66 scaffold was in a sustained-release mode of 14 days. The BVHP66 scaffold significantly promoted rBMSCs' and HUVECs' proliferation and improved osteogenic differentiation of rBMSCs and tube formation of HUVECs in HG environment. In vivo, the BVHP66 scaffold enhanced osteogenesis and angiogenesis, rescuing the poor fracture healing in diabetic rats. Comparing with single peptide modification, the dual peptide-modified scaffold had a synergetic effect on bone regeneration in vivo. Overall, this study reported a novel BVHP66 scaffold with excellent biocompatibility and bioactive property and its application in diabetic fracture.

19.
Ecol Evol ; 11(19): 13268-13282, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34646468

RESUMEN

QUESTION: How conservation and forest type affect macrofungal compositional diversity is not well understood. Even less is known about macrofungal associations with plants, soils, and geoclimatic conditions. LOCATION: Southern edge of boreal forest distribution in China, named as Huzhong Nature Reserve. METHODS: We surveyed a total of 72 plots for recording macrofungi, plants, and topography in 2015 and measured soil organic carbon, nitrogen, and bulk density. Effects of conservation and forest types on macrofungi and plants were compared, and their associations were decoupled by structural equation modeling (SEM) and redundancy ordination (RDA). RESULTS: Conservation and forest type largely shaped macrofungal diversity. Most of the macrofungal traits declined with the conservation intensities or peaked at the middle conservation region. Similarly, 91% of macrofungal traits declined or peaked in the middle succession stage of birch-larch forests. Forest conservation resulted in the observation of sparse, larch-dominant, larger tree forests. Moreover, the soil outside the Reserve had more water, higher fertility, and lower bulk density, showing miscellaneous wood forest preference. There is a complex association between conservation site characteristics, soils, plants, and macrofungi. Variation partitioning showed that soil N was the top-one factor explaining the macrofungal variations (10%). As shown in SEM coefficients, conservation effect to macrofungi (1.1-1.2, p < .05) was like those from soils (1.2-1.6, p < .05), but much larger than the effect from plants (0.01-0.14, p > .10). For all tested macrofungal traits, 89%-97% of their variations were from soils, and 5%-21% were from conservation measures, while plants compensated 1%-10% of these effects. Our survey found a total of 207 macrofungal species, and 65 of them are new updates in this Reserve, indicating data shortage for the macrofungi list here. CONCLUSION: Our findings provide new data for the joint conservation of macrofungi and plant communities, highlighting the crucial importance of soil matrix for macrofungal conservation in boreal forests.

20.
ACS Appl Mater Interfaces ; 13(47): 56273-56284, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34791870

RESUMEN

Skeleton modification on carbon nitride (g-C3N4) via organic molecules is a recognized effective strategy to improve photocatalytic performance because it can powerfully improve charge separation in the skeleton plane. Herein, a diazole with a unique conjugated structure is bonded on edge of the g-C3N4 skeleton through a moderate polymerization of urea with 4-aminoantipyrine (4AAP). Meanwhile, the Pt nanoparticles selectively deposit on edge of the g-C3N4-4AAP15 nanosheet. It reveals that the robust limbic inducted and delocalized effects of diazole not only facilitate photogenerated electrons aggregation toward skeleton edge to promote in-plane carrier separation but also effectively stabilize and delocalize photogenerated electrons to improve carrier lifetime for propelling the photocatalytic hydrogen evolution (PHE) reaction. Specifically, the PHE rate over optimal g-C3N4-4AAP15 (284.2 µmol h-1) is 10 times that of pure g-C3N4 (27.6 µmol h-1) and the apparent quantum efficiency (AQE) at 420 nm reaches up to 24.2%. Through insights into the functionalized effect of small nitrogenous heterocycles introduced into the skeleton edge of g-C3N4, this work opens a new design thought for exploiting high-efficiency g-C3N4-based photocatalysts for photocatalytic application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA