Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Clin Immunol ; 44(4): 102, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634985

RESUMEN

PURPOSE: Autoimmunity is a significant feature of APDS1 patients. We aimed to explore the pathogenic immune phenotype and possible mechanisms of autoimmunity in APDS1 patients. METHODS: The clinical records and laboratory data of 42 APDS1 patients were reviewed. Immunophenotypes were evaluated by multiparametric flow cytometry. Autoantibodies were detected via antigen microarray analysis. RESULTS: A total of 42 children with PIK3CD gene mutations were enrolled. Immunological tests revealed increased proportions of effector memory cells (86%) and central memory cells (59%) among CD4+ T cells; increased proportions of effector memory cells (83%) and terminally differentiated effector memory T cells (38%) among CD8+ T cells. Fewer CD3+ T cells and B cells and higher IgG levels were reported in patients with autoimmunity. The proportion of Tregs was decreased, and the proportions of Th9, Tfh, and Tfr cells were increased in APDS1 patients. Among APDS1 patients, higher proportion of Th2 and Tfr cells were found in those with autoimmunity. The proportions of CD11c+ B and CD21lo B cells in patients with autoimmunity were significantly increased. Antigen microarray analysis revealed a wide range of IgG/IgM autoantibodies in patients with APDS1. In patients with autoimmunity, the proportion of Tfr might be positively correlated with autoantibodies. CONCLUSIONS: The pathogenic immune phenotype of APDS1 patients included (1) deceased CD3+ T-cell and B-cell counts and increased IgG levels in patients with autoimmunity, (2) an imbalanced T helper cell subset, (3) increased proportions of autoreactive B cells, and (4) distinct autoantibody reactivities in patients with autoimmunity.


Asunto(s)
Autoanticuerpos , Autoinmunidad , Niño , Humanos , Linfocitos B , Fenotipo , Síndrome , Inmunoglobulina G
2.
J Clin Immunol ; 44(7): 155, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922539

RESUMEN

PURPOSE: Moesin (MSN) deficiency is a recently reported combined immunodeficiency, and few cases have been reported to date. We describe a Chinese patient with a novel mutation causing MSN deficiency and a novel phenotype. METHODS: Clinical and immunological data were collected. Whole-exome sequencing was performed to identify gene mutations. MSN protein expression and T cell proliferation and activation were determined by flow cytometry. Cell migration was confirmed with a Transwell assay. Autoantibody levels were analyzed using antigen microarrays. RESULTS: The patient was a 10-year-old boy who presented with recurrent fever, oral ulcers and dermatomyositis-like symptoms, such as periorbital edema, facial swelling, elevated creatine kinase levels, and abnormal electromyography and muscle biopsy results. Epstein-Barr virus (EBV) DNA was detected in the serum, cells and tissues of this patient. He further developed nasal-type NK/T-cell lymphoma. A novel hemizygous mutation (c.68 A > G, p.N23S) in the MSN gene was found. The immunological phenotype of this patient included persistent decreases in T and B lymphocyte counts but normal immunoglobulin IgG levels. The patient had attenuated MSN protein expression and impaired T-cell proliferation and migration. The proportions of Tfh cells and CD21low B cells in the patient were higher than those in the controls. Moreover, 82 IgG and 102 IgM autoantibodies were more abundant in the patient than in the healthy controls. CONCLUSIONS: The novel mutation N23S is pathogenic and leads to a severe clinical phenotype. EBV infection, tumor, and dermatomyositis-like autoimmune symptoms may be associated with MSN deficiency, further expanding the understanding of the disease.


Asunto(s)
Dermatomiositis , Infecciones por Virus de Epstein-Barr , Proteínas de Microfilamentos , Mutación , Humanos , Masculino , Infecciones por Virus de Epstein-Barr/diagnóstico , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/inmunología , Dermatomiositis/genética , Dermatomiositis/diagnóstico , Dermatomiositis/inmunología , Niño , Proteínas de Microfilamentos/genética , Mutación/genética , Herpesvirus Humano 4 , Secuenciación del Exoma , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/diagnóstico , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Fenotipo , Linfocitos T/inmunología
3.
Front Immunol ; 15: 1364957, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650932

RESUMEN

Introduction: CARD11 is a lymphoid lineage-specific scaffold protein regulating the NF-κB activation downstream of the antigen receptor signal pathway. Defective CARD11 function results in abnormal development and differentiation of lymphocytes, especially thymic regulatory T cells (Treg). Method: In this study, we used patients' samples together with transgenic mouse models carrying pathogenic CARD11 mutations from patients to explore their effects on Treg development. Immunoblotting and a GFP receptor assay were used to evaluate the activation effect of CARD11 mutants on NF-κB signaling. Then the suppressive function of Tregs carrying distinct CARD11 mutations was measured by in vitro suppression assay. Finally, we applied the retroviral transduced bone marrow chimeras to rescue the Treg development in an NF-κB independent manner. Results and discuss: We found CARD11 mutations causing hyper-activated NF-κB signals also gave rise to compromised Treg development in the thymus, similar to the phenotype in Card11 deficient mice. This observation challenges the previous view that CARD11 regulates Treg lineage dependent on the NF-kB activation. Mechanistic investigations reveal that the noncanonical function CARD11, which negatively regulates the AKT/ FOXO1 signal pathway, is responsible for regulating Treg generation. Moreover, primary immunodeficiency patients carrying CARD11 mutation, which autonomously activates NF-κB, also represented the reduced Treg population in their peripheral blood. Our results propose a new regulatory function of CARD11 and illuminate an NF-κB independent pathway for thymic Treg lineage commitment.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD , Guanilato Ciclasa , Mutación , FN-kappa B , Transducción de Señal , Linfocitos T Reguladores , Timo , Animales , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , FN-kappa B/metabolismo , Humanos , Ratones , Timo/inmunología , Timo/citología , Timo/metabolismo , Ratones Transgénicos , Diferenciación Celular/inmunología , Enfermedades de Inmunodeficiencia Primaria/inmunología , Enfermedades de Inmunodeficiencia Primaria/genética , Masculino
4.
Blood Adv ; 8(7): 1667-1682, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38286463

RESUMEN

ABSTRACT: Congenital neutropenia (CN) is a genetic disorder characterized by persistent or intermittent low peripheral neutrophil counts, thus increasing susceptibility to bacterial and fungal infections. Various forms of CN, caused by distinct genetic mutations, exhibit differential responses to granulocyte colony-stimulating factor (G-CSF) therapy, with the underlying mechanisms not fully understood. This study presents an in-depth comparative analysis of clinical and immunological features in 5 CN patient groups (severe congenital neutropenia [SCN]1, SCN3, cyclic neutropenia [CyN], warts, hypogammaglobulinaemia, infections and myelokathexis [WHIM], and Shwachman-Bodian-Diamond Syndrome [SBDS]) associated with mutations in ELANE, HAX1, CXCR4, and SBDS genes. Our analysis led to the identification of 11 novel mutations in ELANE and 1 each in HAX1, CXCR4, and G6PC3 genes. Investigating bone marrow (BM) granulopoiesis and blood absolute neutrophil count after G-CSF treatment, we found that SCN1 and SCN3 presented with severe early-stage disruption between the promyelocyte and myelocyte, leading to a poor response to G-CSF. In contrast, CyN, affected at the late polymorphonuclear stage of neutrophil development, showed a strong G-CSF response. WHIM, displaying normal neutrophil development, responded robustly to G-CSF, whereas SBDS, with moderate disruption from the early myeloblast stage, exhibited a moderate response. Notably, SCN1 uniquely impeded neutrophil development, whereas SCN3, CyN, WHIM, and SBDS also affected eosinophils and basophils. In addition, SCN1, SCN3, and CyN presented with elevated serum immunoglobulins, increased BM plasma cells, and higher A Proliferation-Inducing Ligand levels. Our study reveals a strong correlation between the stage and severity of granulocyte development disruption and the efficacy of G-CSF therapy.


Asunto(s)
Síndromes Congénitos de Insuficiencia de la Médula Ósea , Eosinófilos , Factor Estimulante de Colonias de Granulocitos , Neutropenia/congénito , Humanos , Factor Estimulante de Colonias de Granulocitos/farmacología , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Mutación , Proteínas Adaptadoras Transductoras de Señales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA