Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 22(1): 310, 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33926387

RESUMEN

BACKGROUND: DNA methyltransferase (DMT) genes contribute to plant stress responses and development by de novo establishment and subsequent maintenance of DNA methylation during replication. The photoperiod and/or temperature-sensitive genic male sterile (P/TGMS) lines play an important role in hybrid seed production of wheat. However, only a few studies have reported on the effect of DMT genes on temperature-sensitive male sterility of wheat. Although DMT genes have been investigated in some plant species, the identification and analysis of DMT genes in wheat (Triticum aestivum L.) based on genome-wide levels have not been reported. RESULTS: In this study, a detailed overview of phylogeny of 52 wheat DMT (TaDMT) genes was presented. Homoeolog retention for TaDMT genes was significantly above the average retention rate for whole-wheat genes, indicating the functional importance of many DMT homoeologs. We found that the strikingly high number of TaDMT genes resulted mainly from the significant expansion of the TaDRM subfamily. Intriguingly, all 5 paralogs belonged to the wheat DRM subfamily, and we speculated that tandem duplications might play a crucial role in the TaDRM subfamily expansion. Through the transcriptional analysis of TaDMT genes in a TGMS line BS366 and its hybrids with the other six fertile lines under sterile and fertile conditions, we concluded that TaCMT-D2, TaMET1-B1, and TaDRM-U6 might be involved in male sterility in BS366. Furthermore, a correlation analysis showed that TaMET1-B1 might negatively regulate the expression of TaRAFTIN1A, an important gene for pollen development, so we speculated regarding an epigenetic regulatory mechanism underlying the male sterility of BS366 via the interaction between TaMET1-B1 and TaRAFTIN1A. CONCLUSIONS: Our findings presented a detailed phylogenic overview of the DMT genes and could provide novel insights into the effects of DMT genes on TGMS wheat.


Asunto(s)
Infertilidad Masculina , Triticum , ADN , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Humanos , Masculino , Metiltransferasas , Infertilidad Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura , Triticum/genética , Triticum/metabolismo
2.
Planta ; 247(6): 1307-1321, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29504038

RESUMEN

MAIN CONCLUSION: Transcriptome analysis was carried out for wheat seedlings and spikes from hybrid Jingmai 8 and both inbred lines to unravel mechanisms underlying heterosis. Heterosis, known as one of the most successful strategies for increasing crop yield, has been widely exploited in plant breeding systems. Despite its great importance, the molecular mechanism underlying heterosis remains elusive. In the present study, RNA sequencing (RNA-seq) was performed on the seedling and spike tissues of the wheat (Triticum aestivum) hybrid Jingmai 8 (JM8) and its homozygous parents to unravel the underlying mechanisms of wheat heterosis. In total, 1686 and 2334 genes were identified as differentially expressed genes (DEGs) between the hybrid and the two inbred lines in seedling and spike tissues, respectively. Gene Ontology analysis revealed that DEGs from seedling tissues were significantly enriched in processes involved in photosynthesis and carbon fixation, and the majority of these DEGs expressed at a higher level in JM8 compared to both inbred lines. In addition, cell wall biogenesis and protein biosynthesis-related pathways were also significantly represented. These results confirmed that a combination of different pathways could contribute to heterosis. The DEGs between the hybrid and the two inbred progenitors from the spike tissues were significantly enriched in biological processes related to transcription, RNA biosynthesis and molecular function categories related to transcription factor activities. Furthermore, transcription factors such as NAC, ERF, and TIF-IIA were highly expressed in the hybrid JM8. These results may provide valuable insights into the molecular mechanisms underlying wheat heterosis.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Vigor Híbrido/genética , Transcriptoma , Triticum/genética , Perfilación de la Expresión Génica , Ontología de Genes , Endogamia , Inflorescencia/genética , Inflorescencia/fisiología , Fotosíntesis , Plantones/genética , Plantones/fisiología , Análisis de Secuencia de ARN , Triticum/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA