Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Org Chem ; 89(12): 8326-8333, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38817078

RESUMEN

Here, we present a straightforward α-trans-selective hydroboration of alkynyl sulfones with NHC-boranes without the need for a catalyst. This reaction is compatible with a wide range of substrates for efficiently producing structurally diverse α-borylated vinyl sulfones in satisfactory yields. The hydride transfer from NHC-borane 2a to alkynyl triflone 1b is studied by density functional theory (DFT) calculations for trans-hydroboration. Moreover, a regiodivergent deuterated semihydrogenation of alkynyl triflones has also been developed using D2O as the deuterium source. A variety of diversity-oriented D-containing vinyl triflones were prepared in good to excellent yields with excellent deuterium incorporation ratios. Synthetic manipulations of the deuterated products are achieved for the conversion into valuable deuterated molecules, indicating the utility of this protocol.

2.
J Org Chem ; 89(5): 3331-3344, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38363745

RESUMEN

A gold(I)-catalyzed hydroamination/cycloisomerization cascade reaction was developed to yield indolizino[8,7-b]indole and indolo[2,3-a]-quinolizine derivatives from 2-ethynyltryptamides. The optimal conditions were determined by condition screening, and the functional group tolerances of these reactions were explored based on synthetic substrates. An insight into the explanation on the selectivity of the ring closure was obtained by density functional theory calculations. A plausible mechanism for the cascade reactions was proposed. Derivatization of the indolizino[8,7-b]indole and total synthesis of nauclefidine demonstrated the practicality of this strategy.

3.
Int J Biol Macromol ; 269(Pt 2): 132103, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719011

RESUMEN

Rhodotorula spp. has been studied as one powerful source for a novel cell factory with fast growth and its high added-value biomolecules. However, its inadequate genome and genomic annotation have hindered its widespread use in cosmetics and food industries. Rhodotorula glutinis QYH-2023, was isolated from rice rhizosphere soil, and the highest quality of the genome of the strain was obtained at chromosome level (18 chromosomes) than ever before in red yeast in this study. Comparative genomics analysis revealed that there are more key gene copies of carotenoids biosynthesis in R. glutinis QYH-2023 than other species of Rhodotorula spp. Integrated transcriptome and metabolome analysis revealed that lipids and carotenoids biosynthesis was significantly enriched during fermentation. Subsequent investigation revealed that the over-expression of the strain three genes related to carotenoids biosynthesis in Komagataella phaffii significantly promoted the carotenoid production. Furthermore, in vitro tests initially confirmed that the longer the fermentation period, the synthesized metabolites controlled by R. glutinis QYH-2023 genome had the stronger anti-inflammatory properties. All of the findings revealed a high-quality reference genome which highlight the potential of R. glutinis strains to be employed as chassis cells for biosynthesizing carotenoids and other active chemicals.


Asunto(s)
Carotenoides , Genoma Fúngico , Rhodotorula , Carotenoides/metabolismo , Rhodotorula/genética , Rhodotorula/metabolismo , Antiinflamatorios/farmacología , Fermentación , Cromosomas Fúngicos/genética , Genómica/métodos , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA