Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
EMBO J ; 43(12): 2337-2367, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38649537

RESUMEN

Mitochondria are cellular powerhouses that generate energy through the electron transport chain (ETC). The mitochondrial genome (mtDNA) encodes essential ETC proteins in a compartmentalized manner, however, the mechanism underlying metabolic regulation of mtDNA function remains unknown. Here, we report that expression of tricarboxylic acid cycle enzyme succinate-CoA ligase SUCLG1 strongly correlates with ETC genes across various TCGA cancer transcriptomes. Mechanistically, SUCLG1 restricts succinyl-CoA levels to suppress the succinylation of mitochondrial RNA polymerase (POLRMT). Lysine 622 succinylation disrupts the interaction of POLRMT with mtDNA and mitochondrial transcription factors. SUCLG1-mediated POLRMT hyposuccinylation maintains mtDNA transcription, mitochondrial biogenesis, and leukemia cell proliferation. Specifically, leukemia-promoting FMS-like tyrosine kinase 3 (FLT3) mutations modulate nuclear transcription and upregulate SUCLG1 expression to reduce succinyl-CoA and POLRMT succinylation, resulting in enhanced mitobiogenesis. In line, genetic depletion of POLRMT or SUCLG1 significantly delays disease progression in mouse and humanized leukemia models. Importantly, succinyl-CoA level and POLRMT succinylation are downregulated in FLT3-mutated clinical leukemia samples, linking enhanced mitobiogenesis to cancer progression. Together, SUCLG1 connects succinyl-CoA with POLRMT succinylation to modulate mitochondrial function and cancer development.


Asunto(s)
Biogénesis de Organelos , Succinato-CoA Ligasas , Animales , Humanos , Ratones , Acilcoenzima A/metabolismo , Acilcoenzima A/genética , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , ADN Mitocondrial/metabolismo , ADN Mitocondrial/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Leucemia/metabolismo , Leucemia/genética , Leucemia/patología , Mitocondrias/metabolismo , Mitocondrias/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Succinato-CoA Ligasas/metabolismo , Succinato-CoA Ligasas/genética
2.
FEBS Lett ; 598(12): 1513-1531, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38664231

RESUMEN

Mitochondria harbor the oxidative phosphorylation (OXPHOS) system to sustain cellular respiration. However, the transcriptional regulation of OXPHOS remains largely unexplored. Through the cancer genome atlas (TCGA) transcriptome analysis, transcription factor THAP domain-containing 3 (THAP3) was found to be strongly associated with OXPHOS gene expression. Mechanistically, THAP3 recruited the histone methyltransferase SET and MYND domain-containing protein 3 (SMYD3) to upregulate H3K4me3 and promote OXPHOS gene expression. The levels of THAP3 and SMYD3 were altered by metabolic cues. They collaboratively supported liver cancer cell proliferation and colony formation. In clinical human liver cancer, both of them were overexpressed. THAP3 positively correlated with OXPHOS gene expression. Together, THAP3 cooperates with SMYD3 to epigenetically upregulate cellular respiration and liver cancer cell proliferation.


Asunto(s)
Carcinoma Hepatocelular , Proliferación Celular , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina , Neoplasias Hepáticas , Fosforilación Oxidativa , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Proliferación Celular/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Respiración de la Célula/genética , Línea Celular Tumoral , Histonas/metabolismo , Histonas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
3.
Nat Commun ; 14(1): 6523, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37863889

RESUMEN

Cuproptosis, caused by excessively high copper concentrations, is urgently exploited as a potential cancer therapeutic. However, the mechanisms underlying the initiation, propagation, and ultimate execution of cuproptosis in tumors remain unknown. Here, we show that copper content is significantly elevated in gastric cancer (GC), especially in malignant tumors. Screening reveals that METTL16, an atypical methyltransferase, is a critical mediator of cuproptosis through the m6A modification on FDX1 mRNA. Furthermore, copper stress promotes METTL16 lactylation at site K229 followed by cuproptosis. The process of METTL16 lactylation is inhibited by SIRT2. Elevated METTL16 lactylation significantly improves the therapeutic efficacy of the copper ionophore- elesclomol. Combining elesclomol with AGK2, a SIRT2-specific inhibitor, induce cuproptosis in gastric tumors in vitro and in vivo. These results reveal the significance of non-histone protein METTL16 lactylation on cuproptosis in tumors. Given the high copper and lactate concentrations in GC, cuproptosis induction becomes a promising therapeutic strategy for GC.


Asunto(s)
Apoptosis , Neoplasias Gástricas , Humanos , Cobre , Ácido Láctico , Metiltransferasas/genética , ARN Mensajero/genética , Sirtuina 2 , Neoplasias Gástricas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA