Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
ScientificWorldJournal ; 2014: 768215, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24757436

RESUMEN

We will discuss nonoscillatory solutions to the n-dimensional functional system of neutral type dynamic equations on time scales. We will establish some sufficient conditions for nonoscillatory solutions with the property lim(t → ∞) x(i) (t) = 0, i = 1, 2,…, n.


Asunto(s)
Matemática , Modelos Teóricos
2.
ScientificWorldJournal ; 2014: 219437, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25101315

RESUMEN

We study the following max-type difference equation xn = max{A(n)/x(n-r), x(n-k)}, n = 1,2,…, where {A(n)} n=1 (+∞) is a periodic sequence with period p and k, r ∈ {1,2,…} with gcd(k, r) = 1 and k ≠ r, and the initial conditions x(1-d), x(2-d),…, x 0 are real numbers with d = max{r, k}. We show that if p = 1 (or p ≥ 2 and k is odd), then every well-defined solution of this equation is eventually periodic with period k, which generalizes the results of (Elsayed and Stevic (2009), Iricanin and Elsayed (2010), Qin et al. (2012), and Xiao and Shi (2013)) to the general case. Besides, we construct an example with p ≥ 2 and k being even which has a well-defined solution that is not eventually periodic.


Asunto(s)
Modelos Teóricos
3.
Springerplus ; 5(1): 1469, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27652044

RESUMEN

The purpose of this work is to establish a Lyapunov-type inequality for the following dynamic equation [Formula: see text]on some time scale T under the anti-periodic boundary conditions [Formula: see text], where [Formula: see text] for [Formula: see text] and [Formula: see text], [Formula: see text] with [Formula: see text] and [Formula: see text], p is the quotient of two odd positive integers and [Formula: see text] with [Formula: see text].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA