Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(15): 10640-10654, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38568727

RESUMEN

Foreign ions as additives are of great significance for realizing excellent control over the morphology of noble metal nanostructures in the state-of-the-art seed-mediated growth method; however, they remain largely unexplored in chiral synthesis. Here, we report on a Cu2+-dominated chiral growth strategy that can direct the growth of concave chiral Au nanoparticles with C3-dominant chiral centers. The introduction of trace amounts of Cu2+ ions in the seed-mediated chiral growth process is found to dominate the chirality transfer from chiral molecules to chiral nanoparticles, leading to the formation of chiral nanoparticles with a concave VC geometry. Both experimental and theoretical results further demonstrate the correlation between the nanoparticle structure and optical chirality for the concave chiral nanoparticle. The Cu2+ ion is found to dominate the chiral growth by selectively activating the deposition of Au atoms along the [110] and [111] directions, facilitating the formation of the concave VC. We further demonstrate that the Cu2+-dominated chiral growth strategy can be employed to generate a variety of concave chiral nanoparticles with enriched geometric chirality and desired chiroptical properties. Concave chiral nanoparticles also exhibit appealing catalytic activity and selectivity toward electrocatalytic oxidation of enantiomers in comparison to helicoidal nanoparticles. The ability to tune the geometric chirality in a controlled manner by simply manipulating the Cu2+ ions as additives opens up a promising strategy for creating chiral nanomaterials with increasing architectural diversity for chirality-dependent optical and catalytic applications.

2.
Small ; 20(23): e2310353, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38150652

RESUMEN

Integrating the plasmonic chirality with excellent catalytic activities in plasmonic hybrid nanostructures provides a promising strategy to realize the chiral nanocatalysis toward many chemical reactions. However, the controllable synthesis of catalytically active chiral plasmonic nanoparticles with tailored geometries and compositions remains a significant challenge. Here it is demonstrated that chiral Au-Pd alloy nanorods with tunable optical chirality and catalytically active surfaces can be achieved by a seed-mediated coreduction growth method. Through manipulating the chiral inducers, Au nanorods selectively transform into two different intrinsically chiral Au-Pd alloy nanorods with distinct geometric chirality and tunable optical chirality. By further adjusting several key synthetic parameters, the optical chirality, composition, and geometry of the chiral Au-Pd nanorods are fine-tailored. More importantly, the chiral Au-Pd alloy nanorods exhibit appealing chiral catalytic activities as well as polarization-dependent plasmon-enhanced nanozyme catalytic activity, which has great potential for chiral nanocatalysis and plasmon-induced chiral photochemistry.

3.
Nano Lett ; 23(23): 11376-11384, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38038244

RESUMEN

Constructing chiral plexcitonic systems with tunable plasmon-exciton coupling may advance the scientific exploitation of strong light-matter interactions. Because of their intriguing chiroptical properties, chiral plasmonic materials have shown promising applications in photonics, sensing, and biomedicine. However, the strong coupling of chiral plasmonic nanoparticles with excitons remains largely unexplored. Here we demonstrate the construction of a chiral plasmon-exciton system using chiral AuAg nanorods and J aggregates for tuning the plexcitonic optical chirality. Circular dichroism spectroscopy was employed to characterize chiral plasmon-exciton coupling, in which Rabi splitting and anticrossing behaviors were observed, whereas the extinction spectra exhibited less prominent phenomena. By controlling the number of molecular excitons and the energy detuning between plasmons and excitons, we have been able to fine-tune the plexcitonic optical chirality. The ability to fine-tune the plexcitonic optical chirality opens up unique opportunities for exploring chiral light-matter interactions and boosting the development of emerging chiroptical devices.

4.
Small ; 19(30): e2301218, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37029697

RESUMEN

Site-selective chiral growth of anisotropic nanoparticles is of great importance to realize the plasmonic nanostructures with delicate geometry and desired optical chirality; however, it remains largely unexplored. This work demonstrates a controlled site-selective chiral growth system based on the seed-mediated growth of anisotropic Au triangular nanoplates. The site-selective chiral growth involves two distinct underlying pathways, faceted growth and island growth, which are interswitchable upon maneuvering the interplay of chiral molecules, surfactants, and reducing agents. The pathway switch governs the geometric and chirality evolution of Au triangular nanoplates, giving rise to tailorable circular dichroism spectra. The ability to tune the optical chirality in a controlled manner by manipulating the site-selective chiral growth pathway opens up a promising strategy for exploiting chiral metamaterials with increasing architectural complexity in chiroptical applications.

5.
ACS Nano ; 18(13): 9543-9556, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38518176

RESUMEN

Chirality transfer from chiral molecules to chiral nanomaterials represents an important topic for exploring the origin of chirality in many natural and artificial systems. Moreover, developing a promising class of chiral nanomaterials holds great significance for various applications, including sensing, photonics, catalysis, and biomedicine. Here we demonstrate the geometric control and tunable optical chirality of chiral pentatwinned Au nanoparticles with 5-fold rotational symmetry using the seed-mediated chiral growth method. A distinctive growth pathway and optical chirality are observed using pentatwinned decahedra as seeds, in comparison with the single-crystal Au seeds. By employing different peptides as chiral inducers, pentatwinned Au nanoparticles with two distinct geometric chirality (pentagonal nanostars and pentagonal prisms) are obtained. The intriguing formation and evolution of geometric chirality with the twinned structure are analyzed from a crystallographic perspective upon maneuvering the interplay of chiral molecules, surfactants, and reducing agents. Moreover, the interesting effects of the molecular structure of peptides on tuning the geometric chirality of pentatwinned Au nanoparticles are also explored. Finally, we theoretically and experimentally investigate the far-field and near-field optical properties of chiral pentatwinned Au nanoparticles through numerical simulations and single-particle chiroptical measurements. The ability to tune the geometric chirality in a controlled manner represents an important step toward the development of chiral nanomaterials with increasing architectural complexity for chiroptical applications.

6.
ISA Trans ; 134: 1-15, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36153189

RESUMEN

Achieving efficient and safe autonomous exploration in unknown environments is an urgent challenge to be overcome in the field of robotics. Existing exploration methods based on random and greedy strategies cannot ensure that the robot moves to the unknown area as much as possible, and the exploration efficiency is not high. In addition, because the robot is located in an unknown environment, the robot cannot obtain enough information to process the surrounding environment and cannot guarantee absolute safety. To improve the efficiency and safety of exploring unknown environments, we propose an autonomous exploration motion planning framework that is divided into the exploration and obstacle avoidance levels. The two levels are independent and interconnected. The exploration level finds the optimal frontier target point in the global scope based on the forward filtering angle and cost function, attracting the robot to move to the unknown area as much as possible, and improving the exploration efficiency; the obstacle avoidance level establishes a scenario-speed conversion mechanism, and the target point and obstacle information are weighed to realise dynamic motion planning and completes obstacle avoidance control, and ensures the safety of exploration. Experiments in different simulation scenarios and real environments verify the superiority of the method. Results show that our method is superior to the existing methods.

7.
Adv Mater ; : e2306297, 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37572380

RESUMEN

Intrinsically chiral plasmonic nanomaterials exhibit intriguing geometry-dependent chiroptical properties, which is due to the combination of plasmonic features with geometric chirality. Thus, chiral plasmonic nanomaterials have become promising candidates for applications in biosensing, asymmetric catalysis, biomedicine, photonics, etc. Recent advances in geometric control and optical tuning of intrinsically chiral plasmonic nanomaterials have further opened up a unique opportunity for their widespread applications in many emerging technological areas. Here, the recent developments in the geometric control of chiral plasmonic nanomaterials are reviewed with special attention given to the quantitative understanding of the chiroptical structure-property relationship. Several important optical spectroscopic tools for characterizing the optical chirality of plasmonic nanomaterials at both ensemble and single-particle levels are also discussed. Three emerging applications of chiral plasmonic nanomaterials, including enantioselective sensing, enantioselective catalysis, and biomedicine, are further highlighted. It is envisioned that these advanced studies in chiral plasmonic nanomaterials will pave the way toward the rational design of chiral nanomaterials with desired optical properties for diverse emerging technological applications.

8.
ACS Nano ; 16(11): 19174-19186, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36251931

RESUMEN

Plasmonic nanoparticles with an intrinsic chiral structure have emerged as a promising chiral platform for applications in biosensing, medicine, catalysis, separation, and photonics. Quantitative understanding of the correlation between nanoparticle structure and optical chirality becomes increasingly important but still represents a significantly challenging task. Here we demonstrate that tunable signal reversal of circular dichroism in the seed-mediated chiral growth of plasmonic nanoparticles can be achieved through the hybridization of bichiral centers without inverting the geometric chirality. Both experimental and theoretical results demonstrated the opposite sign of circular dichroism of two different bichiral geometries. Chiral molecules were found to not only contribute to the chirality transfer from molecules to nanoparticles but also manipulate the structural evolution of nanoparticles that synergistically drive the formation of two different chiral centers. By deliberately adjusting the concentration of chiral molecules and other synthetic parameters, such as the reducing agent concentration, the capping surfactant concentration, and the amount of Au precursor, we have been able to fine-tune the circular dichroism reversal of bichiral Au nanoparticles. We further demonstrate that the structure of chiral molecules and the crystal structure of Au seeds play crucial roles in the formation of Au nanoparticles with bichiral centers. The insights gained from this work not only shed light on the underlying mechanisms dictating the intriguing geometric and chirality evolution of bichiral plasmonic nanoparticles but also provide an important knowledge framework that guides the rational design of bichiral plasmonic nanostructures toward chiroptical applications.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Dicroismo Circular , Oro/química , Nanopartículas del Metal/química , Nanoestructuras/química , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA