Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Environ Sci Technol ; 58(40): 17908-17915, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39344972

RESUMEN

Resistant bacteria have always been of research interest worldwide. In the urban water system, the increased disinfectant usage gives more chances for undesirable disinfection-resistant bacteria. As the strongest oxidative disinfectant in large-scale water treatment, ozone might select ozone-resistant bacteria (ORB), which, however, have rarely been reported and are inexplicit for their resistant mechanisms and physiological characteristics. In this study, six strains of ORB were screened from a water reclamation plant in Beijing. Three of them (O7, CR19, and O4) were more resistant to ozone than all previously reported ORB or even spores. The ozone consumption capacity of extracellular polymeric substances and cell walls was proved to be the main sources of bacterial ozone resistance, rather than intracellular antioxidant enzymes. The transcriptome results elucidated that strong ORB possessed a combined antioxidant mechanism consisting of the enhanced transcription of protein synthesis, protein export, and polysaccharide export genes (LptF, LptB, NodJ, LivK, LviG, MetQ, MetN, and GltU). This study confirmed the existence of ORB in urban water systems and brought doubts to the idea of a traditional control strategy against chlorine-resistant bacteria. A salient "trade-off" effect between the ozone resistance and propagation ability indicated the weakness and potential control approaches of ORB.


Asunto(s)
Bacterias , Ozono , Purificación del Agua , Ozono/farmacología , Bacterias/efectos de los fármacos , Desinfectantes/farmacología , Desinfección
2.
Mol Cancer ; 21(1): 212, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36457016

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) patients with primary tumors and liver metastases have substantially reduced survival. Since mesenchymal-epithelial transition factor (MET) plays a significant role in the molecular mechanisms of advanced NSCLC, small molecule MET inhibitor capmatinib (INC280) hold promise for clinically NSCLC treatment. However, the major obstacles of MET-targeted therapy are poor drug solubility and off-tumor effects, even oral high-dosing regimens cannot significantly increase the therapeutic drug concentration in primary and metastatic NSCLC. METHODS: We developed a multirooted delivery system INC280-PFCE nanoparticles (NPs) by loading INC280 into perfluoro-15-crown-5-ether for improving MET-targeted therapy. Biodistribution and anti-MET/antimetastatic effects of NPs were validated in orthotopic NSCLC and NSCLC liver metastasis models in a single low-dose. The efficacy of INC280-PFCE NPs was also explored in human NSCLC specimens. RESULTS: INC280-PFCE NPs exhibited excellent antitumor ability in vitro. In orthotopic NSCLC models, sustained release and prolonged retention behaviors of INC280-PFCE NPs within tumors could be visualized in real-time by 19F magnetic resonance imaging (19F-MRI), and single pulmonary administration of NPs showed more significant tumor growth inhibition than oral administration of free INC280 at a tenfold higher dose. Furthermore, a single low-dose INC280-PFCE NPs administered intravenously suppressed widespread dissemination of liver metastasis without systemic toxicity. Finally, we verified the clinical translation potential of INC280-PFCE NPs in human NSCLC specimens. CONCLUSIONS: These results demonstrated high anti-MET/antimetastatic efficacies, real-time MRI visualization and high biocompatibility of NPs after a single low-dose.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Hepáticas , Neoplasias Pulmonares , Nanopartículas , Humanos , Medicina de Precisión , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Distribución Tisular , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico
3.
Comput Biol Med ; 171: 108065, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387379

RESUMEN

Observational studies have indicated a potential influence of childhood phenotypes on the later development of type 2 diabetes (T2D). However, the underlying biological mechanisms remain unclear. In this study, we conducted a comprehensive genome-wide analysis to investigate the shared genetic architecture and genetic loci between nine childhood phenotypes (N = 4202-620,26) and later-life T2D (N = 80,154) using genetic correlation, mendelian randomization (MR), and conjunctional false discovery rate (conjFDR) statistical frameworks. Our findings demonstrated substantial genetic correlations and pleiotropic enrichment between childhood obesity, body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), and later-life T2D. Childhood obesity exhibited a significant association with increased later-life T2D risk through 10 mediators, 6 of which were adulthood obesity-related phenotypes. Additionally, we identified 69, 83, 3, 5, 10, 5, 3, and 7 loci shared between childhood obesity, BMI, SBP, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), apolipoprotein A-I (ApoA-I), apolipoprotein B (ApoB), and T2D at conjFDR <0.05, with the majority of these loci being novel discoveries. Overall, our study reveals extensive genetic overlap between childhood obesity-related phenotypes and T2D with concordant effect directions, shedding new light on variants and phenotypes with lifelong effects.


Asunto(s)
Diabetes Mellitus Tipo 2 , Obesidad Infantil , Humanos , Niño , Adulto , Diabetes Mellitus Tipo 2/genética , Obesidad Infantil/genética , Estudio de Asociación del Genoma Completo , Fenotipo , HDL-Colesterol/genética , Polimorfismo de Nucleótido Simple/genética
4.
Comput Biol Med ; 172: 108253, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484698

RESUMEN

BACKGROUND: The morphological attributes could serve as pivotal indicators precipitating early recurrence and dismal overall survival in hepatocellular carcinoma (HCC), and quantifying morphological features may better stratify the prognosis of HCC. OBJECTIVE: To develop a radiomics approach based on 3D tumor morphology features for predicting the prognosis of HCC and identifying differentially expressed genes related to morphology to guide HCC treatment. MATERIALS AND METHODS: Retrospective study of 357 HCC patients. Radiomic features were extracted from MRI tumor regions; 14 morphology-related features predicted early HCC recurrence and patient stratification via LASSO-Cox modeling. Overall survival (OS) and recurrence-free survival (RFS) were analyzed. RNA sequencing from the Cancer Imaging Archive (TCIA) examined drug sensitivity and stratified HCC using morphological immunity genes, validating recurrence and prognosis. RESULTS: Patients were split into training (n = 225), test (n = 132), and 50 TCIA dataset cohorts. Two features (Maximum2DdiameterColumn, Sphericity) in Cox regression stratified patients into high/low-risk Morphological Radiological Score (Morph-RS) groups. Significant OS and RFS were seen across all sets. Differentially expressed genes focused on T cell receptor signaling; low-risk group had higher T cells (P = 0.039), B cells (P = 0.041), NK cells (P = 0.018). SN-38, GSK2126458 might treat high-risk morphology. Morphology-immune genes stratified HCC, showing significant RFS/OS differences. CONCLUSION: Tumor Morph-RS effectively stratifies HCC patients' recurrence and prognosis. Limited immune infiltration seen in Morph-RS high-risk groups signifies the potential of employing tumor morphology as a potent visual biomarker for diagnosing and managing HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Radiología , Humanos , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/genética , Estudios Retrospectivos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/genética , Expresión Génica
5.
Artículo en Inglés | MEDLINE | ID: mdl-38532218

RESUMEN

The mining of uranium-beryllium ores has resulted in substantial beryllium (Be) contamination. In this study, agricultural waste durian shells were utilized as raw materials to prepare biochar, which was further modified to enhance its adsorption capacity (Mn-DSB). The results effectively demonstrated Mn loading onto the DSB surface. Batch experiments were conducted to identify the optimal adsorption conditions of Mn-DSB for beryllium. At a temperature of 35 °C and pH 6, beryllium's maximum adsorption capacity (Qe) was 42.08 mg·g-1. The materials' internal structure was analyzed before and after adsorption via multiple techniques. Mn-DSB manifested potent selectivity towards beryllium in multicomponent mixed solutions, binary systems, and uranium-beryllium wastewater, as the beryllium removal rate exceeded 90%. The study investigated the recyclability of Mn-DSB and found that after five reuse cycles, the adsorption and desorption efficiencies were 90% and 85%, respectively. The strong ligand complexation (N-H, CO32-, -OH) and ion exchange mechanisms (with Mn7+ ions) of Mn-DSB explained its high adsorption capacity. Therefore, this study demonstrates the potential of Mn-DSB for treating uranium-beryllium tailing wastewater.

6.
Int J Biol Macromol ; 269(Pt 2): 131851, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692543

RESUMEN

A novel environmentally-friendly porous hydrogel adsorbent (GHPN) is firstly designed and prepared using dextran, phosphate, and calcium hydroxide for the adsorption of Be(II). GHPN shows good adsorption selectivity for Be(II) (Kd = 1.53 × 104 mL/g). According the adsorption kinetics and thermodynamics, the theoretical adsorption capacity of GHPN to Be(II) is 43.75 mg/g (35 °C, pH = 6.5), indicating a spontaneous exothermic reaction. After being reused for 5 cycles, the adsorption and desorption efficiencies of Be(II) with GHPN are obtained to be more than 80 %, showing acceptable recycling performance. Both of the characterizations and theoretical calculations indicate that the phosphate group, hydroxyl group, and amino group own the affinity to form stable complexes with Be(II). Benefiting from the introduction of phosphate and amino, the adsorption effect of the hydrogel adsorbent on Be(II) can be greatly improved, and surface precipitation, complexation, and ligand exchange are the dominant mechanisms of beryllium adsorption. The results suggest that GHPN has great potential to be utilized as an eco-friendly and useful adsorbent of Be(II) from aqueous solution.


Asunto(s)
Dextranos , Hidrogeles , Fosfatos , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Dextranos/química , Porosidad , Fosfatos/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Cinética , Purificación del Agua/métodos , Hidrogeles/química , Termodinámica , Concentración de Iones de Hidrógeno , Soluciones , Agua/química
7.
Comput Biol Med ; 171: 108136, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367451

RESUMEN

BACKGROUND: Mesenchymal epithelial transformation (MET) is a key molecular target for diagnosis and treatment of non-small cell lung cancer (NSCLC). The corresponding molecularly targeted therapeutics have been approved by Food and Drug Administration (FDA), achieving promising results. However, current detection of MET dysregulation requires biopsy and gene sequencing, which is invasive, time-consuming and difficult to obtain tumor samples. METHODS: To address the above problems, we developed a noninvasive and convenient deep learning (DL) model based on Computed tomography (CT) imaging data for prediction of MET dysregulation. We introduced the unsupervised algorithm RK-net for automated image processing and utilized the MedSAM large model to achieve automated tissue segmentation. Based on the processed CT images, we developed a DL model (METnet). The model based on the grouped convolutional block. We evaluated the performance of the model over the internal test dataset using the area under the receiver operating characteristic curve (AUROC) and accuracy. We conducted subgroup analysis on the basis of clinical data of the lung cancer patients and compared the performance of the model in different subgroups. RESULTS: The model demonstrated a good discriminative ability over the internal test dataset. The accuracy of METnet was 0.746 with an AUC value of 0.793 (95% CI 0.714-0.871). The subgroup analysis revealed that the model exhibited similar performance across different subgroups. CONCLUSIONS: METnet realizes prediction of MET dysregulation in NSCLC, holding promise for guiding precise tumor diagnosis and treatment at the molecular level.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Aprendizaje Profundo , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Neoplasias Pulmonares/patología , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Estudios Retrospectivos
8.
Water Res ; 249: 120890, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38016222

RESUMEN

Emerging electrochemical disinfection techniques provide a promising pathway to the biofouling control of reverse osmosis (RO) process. However, the comparative effectiveness and mechanism of it under flow-through conditions with low voltage remains unclear. This study investigated the effect of a flow-through electrode system (FES) with both direct current (DC) and alternating pulse current (AC) on RO biofouling control compared with chlorine disinfection. At the initial stage of biofouling development, the normalized flux of AC-FES (67% on Day 5) was saliently higher than the control group (56% on Day 5). Subsequently, the normalized fluxes of each group tended similarity in their differences until the 20th day. After mild chemical cleaning, the RO membrane in the AC-FES group reached the highest chemical cleaning efficiency of 58%, implying its foulant was more readily removable and the biofouling was more reversible. The biofouling layer in the DC-FES group was also found to be easily cleanable. Morphological analysis suggested that the thickness and compactness of the fouling layers were the major reasons for the fouling behavior difference. The abundance of 4 fouling-related abundant genera (>1%), which were Pseudomonas, Thiobacillus, Sphingopyxis, and Mycobacterium exhibited a salient correlation with the biofouling degree. The operating cost of FES was also lower than that of chlorine disinfection. In summary, AC-FES is a promising alternative to chlorine disinfection in RO biofouling control, as it caused less and easy-cleaning biofouling layer mainly due to two advantages: a) reducing the regrowth potential after disinfection of the bacteria, leading to alleviated initial fouling, (b) reshaping the microbial community to those with weaker biofilm formation capacity.


Asunto(s)
Incrustaciones Biológicas , Purificación del Agua , Aguas Residuales , Incrustaciones Biológicas/prevención & control , Cloro , Membranas Artificiales , Ósmosis , Purificación del Agua/métodos
9.
Sci Total Environ ; 904: 166297, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37595918

RESUMEN

With the increasingly serious shortage of water resources globally, it has been paid more attention on how to secure the biosafety of reclaimed water and other non-traditional water sources. However, the 3 most applied disinfection technics, which are chlorine, ultraviolet (UV), and ozone disinfection, all have their disadvantages of selecting undesired bacteria and low energy utilization efficiency. Electrode disinfection is a promising solution, but the current electrode disinfection process still needs to be optimized in terms of the use conditions of the configuration reactivation. In this paper, we built a flow electrode system (FES). To evaluate the disinfection techniques more precisely, we isolated ultraviolet-resistant bacteria (URB) bacteria from the water of the full-scale water plant and tested the disinfection performance of FES and UV. The inactivation rate, reactivation potential, and energy consumption were analyzed. FES could inactivate 99.99 % of the URB and cause irreversible damage to the residual bacteria. FES could make all bacteria strains apoptosis in the subsequent 24 h of storage after alternating pulse current (APC) treatment, 3 V, within 27.7 s. Besides, the energy consumption of FES is about 2 orders lower than that of UV disinfection under the same inactivation rate. In summary, APC-FES is an efficient and low-carbon alternative for future water disinfection, which could achieve the ideal disinfection effect of a high inactivation rate, no reactivation, and low energy consumption.


Asunto(s)
Purificación del Agua , Agua , Carbono , Bacterias , Desinfección/métodos , Purificación del Agua/métodos , Cloro/farmacología , Electrodos , Rayos Ultravioleta
10.
Water Res ; 243: 120373, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37494748

RESUMEN

The ozone-ultraviolet (UV)-chlorine process is a highly effective method of disinfection in water reuse system, but currently still lacks precise quantification and accurate control. It is difficult to determine the dosage of each disinfectant because of the complex interactions that occur between disinfection units and the complicated mathematical calculation required. In this study, we proposed a dosage optimization model for ozone-UV-chlorine synergistic disinfection process. The model was able to identify the cost-effective doses of the disinfectants under the constraints of microbial inactivation, decolorization, and residual chlorine retention requirements. Specifically, the simulation of microbial inactivation rates during synergistic disinfection process was accomplished through quantification of the synergistic effects between disinfection units and the introduction of enhancement coefficients. In order to solve this optimization model rapidly and automatically, a MATLAB-based software program with graphical user interface was developed. This software consisted of calibration unit, prediction unit, assessment unit, and optimization unit, and was able to simulate synergistic ozone-UV-chlorine process and identify the optimal dose of ozone, UV, and chlorine. Validation experiments revealed good agreements between the experimental data and the results calculated by the developed software. The developed software is believed to help the water reclamation plants improve disinfection efficiency and reduce the operational costs of synergistic disinfection processes.


Asunto(s)
Desinfectantes , Ozono , Purificación del Agua , Desinfección/métodos , Cloro , Agua , Purificación del Agua/métodos , Programas Informáticos , Rayos Ultravioleta
11.
Int J Nanomedicine ; 18: 2181-2196, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37131548

RESUMEN

Purpose: Precisely detecting colorectal liver metastases (CLMs), the leading cause of colorectal cancer-associated mortality, is extremely important. 1H MRI with high soft tissue resolution plays a key role in the diagnosing liver lesions; however, precise detecting CLMs by 1H MRI is a great challenge due to the limited sensitivity. Even though contrast agents may improve the sensitivity, due to their short half-life, repeated injections are required to monitor the changes of CLMs. Herein, we synthesized c-Met-targeting peptide-functionalized perfluoro-15-crown-5-ether nanoparticles (AH111972-PFCE NPs), for highly sensitive and early diagnosis of small CLMs. Methods: The size, morphology and optimal properties of the AH111972-PFCE NPs were characterized. c-Met specificity of the AH111972-PFCE NPs was validated by in vitro experiment and in vivo 19F MRI study in the subcutaneous tumor murine model. The molecular imaging practicability and long tumor retention of the AH111972-PFCE NPs were evaluated in the liver metastases mouse model. The biocompatibility of the AH111972-PFCE NPs was assessed by toxicity study. Results: AH111972-PFCE NPs with regular shape have particle size of 89.3 ± 17.8 nm. The AH111972-PFCE NPs exhibit high specificity, strong c-Met-targeting ability, and precise detection capability of CLMs, especially small or ill-defined fused metastases in 1H MRI. Moreover, AH111972-PFCE NPs could be ultralong retained in metastatic liver tumors for at least 7 days, which is conductive to the implementation of continuous therapeutic efficacy monitoring. The NPs with minimal side effects and good biocompatibility are cleared mainly via the spleen and liver. Conclusion: The c-Met targeting and ultralong tumor retention of AH111972-PFCE NPs will contribute to increasing therapeutic agent accumulation in metastatic sites, laying a foundation for CLMs diagnosis and further c-Met targeted treatment integration. This work provides a promising nanoplatform for the future clinical application to patients with CLMs.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Nanopartículas , Ratones , Animales , Imagen por Resonancia Magnética , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Colorrectales/diagnóstico por imagen
12.
ACS Appl Mater Interfaces ; 15(23): 27809-27820, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37256681

RESUMEN

Lithium-ion battery (LIB) performance can be significantly affected by the nature of the complex electrode microstructure. The carbon binder domain (CBD) present in almost all LIB electrodes is used to enhance mechanical stability and facilitate electronic conduction, and understanding the CBD phase microstructure and how it affects the complex coupled transport processes is crucial to LIB performance optimization. In this work, the influence of microporosity in the CBD phase has been studied in detail for the first time, enabling insight into the relationships between the CBD microstructure and the battery performance. To investigate the effect of the CBD pore size distributions, a random field method is used to generate in silico a multiple-phase electrode structure, including bimodal pore size distributions seen in practice and microporous CBD with a tunable pore size and variable transport properties. The distribution of macropores and the microporous CBD phase substantially affected simulated battery performance, where battery specific capacity improved as the microporosity of the CBD phase increased.

13.
ACS Appl Mater Interfaces ; 14(30): 34538-34551, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35867807

RESUMEN

A porous, spray-deposited Al2O3-based separator was developed to enable the direct deposition of an electrode/separator/electrode Li-ion battery full cell assembly in a single operation. The optimized sprayed separator consisted of 50 nm Al2O3 particles, 1 wt % poly(acrylic acid), and 5 wt % styrene-butadiene rubber, deposited from an 80:20 vol % suspension of water and isopropanol. Separators between 5 and 22 µm thick had consistent and similar porosity of ∼58%, excellent wettability, thermal stability to at least 180 °C, adequate electrochemical stability and high effective ionic conductivity of ∼1 mS cm-1 at room temperature in an EC/DMC electrolyte, roughly double that of a conventional polypropylene separator. A sequentially deposited three-layer LiFePO4/Al2O3/Li4Ti5O12 full cell, the first of its kind, showed similar rate performance to an identical cell with a conventional polypropylene separator, with a capacity of ∼50 mAh g-1 at 30 C. However, after cycling at 2 C for 400 cycles, Al2O3 separator full cells retained 96.3% capacity, significantly more than conventional full cells with a capacity of 79.2% remaining.

14.
Micron ; 156: 103234, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35325668

RESUMEN

Powder materials are used in all corners of materials science, from additive manufacturing to energy storage. Scanning electron microscopy (SEM) has developed to meet morphological, microstructural and bulk chemical powder characterization requirements. These include nanoscale elemental analysis and high-throughput morphological assays. However, spatially localized powder surface chemical information with similar resolution to secondary electron (SE) imaging is not currently available in the SEM. Recently, energy filtered (EF-) SEM has been used for surface chemical characterization by secondary electron hyperspectral imaging (SEHI). This review provides a background to existing powder characterization capabilities in the low voltage SEM provided by SE imaging, EDX analysis and BSE imaging and sets out how these capabilities could be extended for surface chemical analysis by applying SEHI to powders, with particular emphasis on air and beam sensitive powder surfaces. Information accessible by SEHI, its advantages and limitations, is set into the context of other chemical characterization methods that are commonly used for assessing powder surface chemistry such as by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). The applicability of existing powder preparation methods for SEM to SEHI is also reviewed. An alternative preparation method is presented alongside first examples of SEHI characterization of powder surfaces. The commercial powder materials used as examples were carbon-fiber/polyamide composite powder feedstock (CarbonMide®) used in additive manufacturing and powders consisting of lithium nickel cobalt oxide (NMC). SEHI is shown to differentiate bonding present at carbonaceous material surfaces and extract information about the work function of metal oxide surfaces. The surface sensitivity of SEHI is indicated by comparison of pristine powders to those with surface material added in preparation. A minimum spatial localization of chemical information of 55 nm was achieved in differentiating regions of NMC surface chemistry by distinct SE spectra.


Asunto(s)
Electrones , Imágenes Hiperespectrales , Microscopía Electrónica de Rastreo , Espectroscopía de Fotoelectrones , Polvos/química
15.
ACS Nano ; 16(8): 12590-12605, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35863049

RESUMEN

Low accumulation of anticancer drugs in tumors and serious systemic toxicity remain the main challenges to the clinical efficiency of pharmaceuticals. Pulmonary delivery of nanoscale-based drug delivery systems offered a strategy to increase antitumor activity with minimal adverse exposure. Herein, we report an osimertinib-loaded perfluoro-15-crown-5-ether (AZD9291-PFCE) nanoemulsion, through intratracheal and intravenous delivery, synergizes with 19F magnetic resonance imaging (19F MRI)-guided low-intensity focused ultrasound (LIFU) for lung cancer therapy. Pulmonary delivery of AZD9291-PFCE nanoemulsion in orthotopic lung carcinoma models achieves quick distribution of the nanoemulsion in lung tissues and tumors without short-term and long-term toxic effects. Furthermore, LIFU can trigger drug release from the AZD9291-PFCE nanoemulsion and specifically increases tumor vascular and tumor tissue permeability. 19F MRI was applied to quantify nanoemulsion accumulation in tumors in real time after LIFU irradiation. We validate the treatment effect of AZD9291-PFCE nanoemulsion in resected human lung cancer tissues, proving the translational potential to enhance clinical outcomes of lung cancer therapy. Thus, this work presents a promising pulmonary nanoemulsion delivery system of osimertinib (AZD9291) for targeted therapy of lung cancer without severe side effects.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Fluorocarburos , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Fluorocarburos/uso terapéutico , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Línea Celular Tumoral , Administración Intravenosa
16.
J Mater Chem B ; 9(34): 6751-6769, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34346475

RESUMEN

Phototherapy, such as photodynamic therapy (PDT) and photothermal therapy (PTT), possesses unique characteristics of non-invasiveness and minimal side effects in cancer treatment, compared with conventional therapies. However, the ubiquitous tumor hypoxia microenvironments could severely reduce the efficacy of oxygen-consuming phototherapies. Perfluorocarbon (PFC) nanomaterials have shown great practical value in carrying and transporting oxygen, which makes them promising agents to overcome tumor hypoxia and extend reactive oxygen species (ROS) lifetime to improve the efficacy of phototherapy. In this review, we summarize the latest advances in PFC-based PDT and PTT, and combined multimodal imaging technologies in various cancer types, aiming to facilitate their application-oriented clinical translation in the future.


Asunto(s)
Antineoplásicos/farmacología , Materiales Biocompatibles/farmacología , Fluorocarburos/farmacología , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/farmacología , Fototerapia , Antineoplásicos/química , Materiales Biocompatibles/química , Fluorocarburos/química , Humanos , Ensayo de Materiales , Nanoestructuras/química , Imagen Óptica , Fármacos Fotosensibilizantes/química , Especies Reactivas de Oxígeno/metabolismo , Hipoxia Tumoral/efectos de los fármacos
17.
RSC Adv ; 11(54): 34152-34159, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-35497287

RESUMEN

In this work, we synthesized micro-mesoporous graphene1-x (MoS2) x with different compositional ratios via co-reduction of graphite oxide and exfoliated MoS2 platelets. We systematically studied the performance of the micro-mesoporous graphene1-x (MoS2) x as anodes in lithium-ion batteries and sodium-ion batteries. The results show that the specific surface areas of the composites decrease with introducing MoS2. The irreversible capacitance, which is related to the formation of solid electrolyte interphases, also decreases. Besides specific surface area, we found that micropores can benefit the lithiation and sodiation. We demonstrated that a specific charge capacity of 1319.02 mA h g-1 can be achieved at the 50th cycle for the graphene½(MoS2)½ anode in lithium-ion batteries. Possible relationships between such a high specific capacity and the micro-mesoporous structure of the graphene1-x (MoS2) x anode are discussed. This work may shed light on a general strategy for the structural design of electrode materials in lithium-ion batteries and sodium-ion batteries.

18.
Curr Pharm Des ; 26(26): 3096-3104, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32532187

RESUMEN

Drug side effects have become an important indicator for evaluating the safety of drugs. There are two main factors in the frequent occurrence of drug safety problems; on the one hand, the clinical understanding of drug side effects is insufficient, leading to frequent adverse drug reactions, while on the other hand, due to the long-term period and complexity of clinical trials, side effects of approved drugs on the market cannot be reported in a timely manner. Therefore, many researchers have focused on developing methods to identify drug side effects. In this review, we summarize the methods of identifying drug side effects and common databases in this field. We classified methods of identifying side effects into four categories: biological experimental, machine learning, text mining and network methods. We point out the key points of each kind of method. In addition, we also explain the advantages and disadvantages of each method. Finally, we propose future research directions.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Minería de Datos , Bases de Datos Factuales , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Humanos , Aprendizaje Automático
19.
Nanoscale ; 9(7): 2585-2595, 2017 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-28150823

RESUMEN

Hydrazine-reduced graphite oxide and graphene oxide were synthesized to compare their performances as anode materials in lithium-ion batteries and sodium-ion batteries. Reduced graphite oxide inherits the layer structure of graphite, with an average spacing between neighboring layers (d-spacing) of 0.374 nm; this exceeds the d-spacing of graphite (0.335 nm). The larger d-spacing provides wider channels for transporting lithium ions and sodium ions in the material. We showed that reduced graphite oxide as an anode in lithium-ion batteries can reach a specific capacity of 917 mA h g-1, which is about three times of 372 mA h g-1, the value expected for the LiC6 structures on the electrode. This increase is consistent with the wider d-spacing, which enhances lithium intercalation and de-intercalation on the electrodes. The electrochemical performance of the lithium-ion batteries and sodium-ion batteries with reduced graphite oxide anodes show a noticeable improvement compared to those with reduced graphene oxide anodes. This improvement indicates that reduced graphite oxide, with larger interlayer spacing, has fewer defects and is thus more stable. In summary, we found that reduced graphite oxide may be a more favorable form of graphene for the fabrication of electrodes for lithium-ion and sodium-ion batteries and other energy storage devices.

20.
Nanoscale ; 9(13): 4439-4444, 2017 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-28300230

RESUMEN

We have designed and synthesized a unique structured graphene/SnO2 composite, where SnO2 nanoparticles are inserted in between interconnected graphene sheets which form hollow spherical multilayers. The hollow spherical multilayered structure provides much flexibility to accommodate the configuration and volume changes of SnO2 in the material. When it is used as an anode material for lithium-ion batteries, such a novel nanostructure can not only provide a stable conductive matrix and suppress the mechanical stress, but also eliminate the need of any binders for constructing electrodes. Electrochemical tests show that the unique graphene/SnO2 composite electrode as designed could exhibit a large reversible capacity over 1000 mA h g-1 and long cycling life with 88% retention after 100 cycles. These results indicate the great potential of the composite for being used as a high performance anode material for lithium-ion batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA