Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Hum Genet ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811808

RESUMEN

Hereditary spinocerebellar ataxia (SCA) is a group of clinically and genetically heterogeneous inherited disorders characterized by slowly progressive cerebellar ataxia. We ascertained a Japanese pedigree with autosomal dominant SCA comprising four family members, including two patients. We identified a GGCCTG repeat expansion of intron 1 in the NOP56 gene by Southern blotting, resulting in a molecular diagnosis of SCA36. RNA sequencing using peripheral blood revealed that the expression of genes involved in ribosomal organization and translation was decreased in patients carrying the GGCCTG repeat expansion. Genes involved in pathways associated with ribosomal organization and translation were enriched and differentially expressed in the patients. We propose a novel hypothesis that the GGCCTG repeat expansion contributes to the pathogenesis of SCA36 by causing a global disruption of translation resulting from ribosomal dysfunction.

2.
Toxins (Basel) ; 14(5)2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35622547

RESUMEN

Genes encoding snake venom toxins have been studied extensively. However, genes involved in the modification and functioning of venom proteins are little known. Protobothrops is a genus of pit vipers, which are venomous and inhabit the Nansei (Southwest) islands of Japan, Taiwan China, Vietnam, Thailand, Myanmar, Nepal, Bhutan, and India. Our previous study decoded the genome of Protobothrops flavoviridis, a species endemic to the Nansei Islands, Japan, and revealed unique evolutionary processes of some venom genes. In this study, we analyzed genes that are highly expressed in venom glands to survey genes for candidate enzymes or chaperone proteins involved in toxin folding and modification. We found that, in addition to genes that encode venom proteins and ribosomal proteins, genes that encode protein disulfide isomerase (PDI) family members (orthologs of human P4HB and PDIA3), Selenoprotein M (SELENOM), and Calreticulin (CALR) are highly expressed in venom glands. Since these enzymes or chaperones are involved in protein modification and potentially possess protein folding functions, we propose that P4HB, SELENOM, CALR, and PDIA3 encode candidate enzymes or chaperones to confer toxic functions upon the venom transcriptome.


Asunto(s)
Trimeresurus , Animales , China , Genoma , Humanos , Japón , Procesamiento Proteico-Postraduccional , Trimeresurus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA