Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 558
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(11): 105324, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37806494

RESUMEN

Wolf-Hirschhorn syndrome (WHS) is a developmental disorder attributed to a partial deletion on the short arm of chromosome 4. WHS patients suffer from oral manifestations including cleft lip and palate, hypodontia, and taurodontism. WHS candidate 1 (WHSC1) gene is a H3K36-specific methyltransferase that is deleted in every reported case of WHS. Mutation in this gene also results in tooth anomalies in patients. However, the correlation between genetic abnormalities and the tooth anomalies has remained controversial. In our study, we aimed to clarify the role of WHSC1 in tooth development. We profiled the Whsc1 expression pattern during mouse incisor and molar development by immunofluorescence staining and found Whsc1 expression is reduced as tooth development proceeds. Using real-time quantitative reverse transcription PCR, Western blot, chromatin immunoprecipitation, and luciferase assays, we determined that Whsc1 and Pitx2, the initial transcription factor involved in tooth development, positively and reciprocally regulate each other through their gene promoters. miRNAs are known to regulate gene expression posttranscriptionally during development. We previously reported miR-23a/b and miR-24-1/2 were highly expressed in the mature tooth germ. Interestingly, we demonstrate here that these two miRs directly target Whsc1 and repress its expression. Additionally, this miR cluster is also negatively regulated by Pitx2. We show the expression of these two miRs and Whsc1 are inversely correlated during mouse mandibular development. Taken together, our results provide new insights into the potential role of Whsc1 in regulating tooth development and a possible molecular mechanism underlying the dental defects in WHS.


Asunto(s)
Labio Leporino , Fisura del Paladar , MicroARNs , Síndrome de Wolf-Hirschhorn , Animales , Ratones , MicroARNs/genética , Factores de Transcripción , Síndrome de Wolf-Hirschhorn/genética , Síndrome de Wolf-Hirschhorn/metabolismo , Proteína del Homeodomínio PITX2
2.
J Am Chem Soc ; 146(5): 3427-3437, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38243892

RESUMEN

Despite half a century's advance in the field of transition-metal-catalyzed asymmetric alkene hydrogenation, the enantioselective hydrogenation of purely alkyl-substituted 1,1-dialkylethenes has remained an unmet challenge. Herein, we describe a chiral PCNOx-pincer iridium complex for asymmetric transfer hydrogenation of this alkene class with ethanol, furnishing all-alkyl-substituted tertiary stereocenters. High levels of enantioselectivity can be achieved in the reactions of substrates with secondary/primary and primary/primary alkyl combinations. The catalyst is further applied to the redox isomerization of disubstituted alkenols, producing a tertiary stereocenter remote to the resulting carbonyl group. Mechanistic studies reveal a dihydride species, (PCNOx)Ir(H)2, as the catalytically active intermediate, which can decay to a dimeric species (κ3-PCNOx)IrH(µ-H)2IrH(κ2-PCNOx) via a ligand-remetalation pathway. The catalyst deactivation under the hydrogenation conditions with H2 is much faster than that under the transfer hydrogenation conditions with EtOH, which explains why the (PCNOx)Ir catalyst is effective for the transfer hydrogenation but ineffective for the hydrogenation. The suppression of di-to-trisubstituted alkene isomerization by regioselective 1,2-insertion is partly responsible for the success of this system, underscoring the critical role played by the pincer ligand in enantioselective transfer hydrogenation of 1,1-dialkylethenes. Moreover, computational studies elucidate the significant influence of the London dispersion interaction between the ligand and the substrate on enantioselectivity control, as illustrated by the complete reversal of stereochemistry through cyclohexyl-to-cyclopropyl group substitution in the alkene substrates.

3.
Small ; : e2402842, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38923165

RESUMEN

The nacre-inspired multi-nanolayer structure offers a unique combination of advanced mechanical properties, such as strength and crack tolerance, making them highly versatile for various applications. Nevertheless, a significant challenge lies in the current fabrication methods, which is difficult to create a scalable manufacturing process with precise control of hierarchical structure. In this work, a novel strategy is presented to regulate nacre-like multi-nanolayer films with the balance mechanical properties of stiffness and toughness. By utilizing a co-continuous phase structure and an extensional stress field, the hierarchical nanolayers is successfully constructed with tunable sizes using a scalable processing technique. This strategic modification allows the robust phase to function as nacre-like platelets, while the soft phase acts as a ductile connection layer, resulting in exceptional comprehensive properties. The nanolayer-structured films demonstrate excellent isotropic properties, including a tensile strength of 113.5 MPa in the machine direction and 106.3 MPa in a transverse direction. More interestingly, these films unprecedentedly exhibit a remarkable puncture resistance at the same time, up to 324.8 N mm-1, surpassing the performance of other biodegradable films. The scalable fabrication strategy holds significant promise in designing advanced bioinspired materials for diverse applications.

4.
Small ; 20(7): e2305658, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37798674

RESUMEN

Defect engineering is promising to tailor the physical properties of 2D semiconductors for function-oriented electronics and optoelectronics. Compared with the extensively studied 2D binary materials, the origin of defects and their influence on physical properties of 2D ternary semiconductors are not clarified. Here, the effect of defects on the electronic structure and optical properties of few-layer hexagonal Znln2 S4 is thoroughly studied via versatile spectroscopic tools in combination with theoretical calculations. It is demonstrated that the Zn-In antistructural defects induce the formation of a series of donor and acceptor energy levels and sulfur vacancies induce donor energy levels, leading to rich recombination paths for defect emission and extrinsic absorption. Impressively, the emission of donor-acceptor pair in Znln2 S4 can be significantly tailored by electrostatic gating due to efficient tunability of Fermi level (Ef ). Furthermore, the layer-dependent dipole orientation of defect emission in Znln2 S4 is directly revealed by back focal plane imagining, where it presents obviously in-plane dipole orientation within a dozen-layer thickness of Znln2 S4 . These unique features of defects in Znln2 S4 including extrinsic absorption, rich recombination paths, gate tunability, and in-plane dipole orientation are definitely a benefit to the advanced orientation-functional optoelectronic applications.

5.
BMC Microbiol ; 24(1): 158, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720268

RESUMEN

BACKGROUND: The production of succinic acid (SA) from biomass has attracted worldwide interest. Saccharomyces cerevisiae is preferred for SA production due to its strong tolerance to low pH conditions, ease of genetic manipulation, and extensive application in industrial processes. However, when compared with bacterial producers, the SA titers and productivities achieved by engineered S. cerevisiae strains were relatively low. To develop efficient SA-producing strains, it's necessary to clearly understand how S. cerevisiae cells respond to SA. RESULTS: In this study, we cultivated five S. cerevisiae strains with different genetic backgrounds under different concentrations of SA. Among them, KF7 and NBRC1958 demonstrated high tolerance to SA, whereas NBRC2018 displayed the least tolerance. Therefore, these three strains were chosen to study how S. cerevisiae responds to SA. Under a concentration of 20 g/L SA, only a few differentially expressed genes were observed in three strains. At the higher concentration of 60 g/L SA, the response mechanisms of the three strains diverged notably. For KF7, genes involved in the glyoxylate cycle were significantly downregulated, whereas genes involved in gluconeogenesis, the pentose phosphate pathway, protein folding, and meiosis were significantly upregulated. For NBRC1958, genes related to the biosynthesis of vitamin B6, thiamin, and purine were significantly downregulated, whereas genes related to protein folding, toxin efflux, and cell wall remodeling were significantly upregulated. For NBRC2018, there was a significant upregulation of genes connected to the pentose phosphate pathway, gluconeogenesis, fatty acid utilization, and protein folding, except for the small heat shock protein gene HSP26. Overexpression of HSP26 and HSP42 notably enhanced the cell growth of NBRC1958 both in the presence and absence of SA. CONCLUSIONS: The inherent activities of small heat shock proteins, the levels of acetyl-CoA and the strains' potential capacity to consume SA all seem to affect the responses and tolerances of S. cerevisiae strains to SA. These factors should be taken into consideration when choosing host strains for SA production. This study provides a theoretical basis and identifies potential host strains for the development of robust and efficient SA-producing strains.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae , Ácido Succínico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Succínico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fermentación
6.
Cardiovasc Diabetol ; 23(1): 51, 2024 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310324

RESUMEN

BACKGROUND: It has been confirmed that the ApoB/ApoA1 ratio is closely associated with the incidence of cardiometabolic diseases (CMD). However, due to uncontrolled confounding factors in observational studies, the causal relationship of this association remains unclear. METHODS: In this study, we extracted the ApoB/ApoA1 ratio and data on CMD and its associated risk factors from the largest European Genome-Wide Association Study. The purpose was to conduct Mendelian Randomization (MR) analysis. The causal relationship between the ApoB/ApoA1 ratio and CMD was evaluated using both univariable and multivariable MR analyses. Furthermore, bidirectional MR analysis was performed to estimate the causal relationship between the ApoB/ApoA1 ratio and risk factors for CMD. The final verification confirmed whether the ApoB/ApoA1 ratio exhibits a mediating effect in CMD and related risk factors. RESULTS: In terms of CMD, a noteworthy correlation was observed between the increase in the ApoB/ApoA1 ratio and various CMD, including ischemic heart disease, major adverse cardiovascular events, aortic aneurysm, cerebral ischemic disease and so on (all PFDR<0.05). Meanwhile, the ApoB/ApoA1 ratio was significantly associated with CMD risk factors, such as hemoglobin A1c, fasting insulin levels, waist-to-hip ratio, sedentary behavior, and various others, demonstrating a notable causal relationship (all PFDR<0.05). Additionally, the ApoB/ApoA1 ratio played a mediating role in CMD and relative risk factors. CONCLUSIONS: This MR study provides evidence supporting the significant causal relationship between the ApoB/ApoA1 ratio and CMD and its risk factors. Moreover, it demonstrates the mediating effect of the ApoB/ApoA1 ratio in CMD and its risk factors. These findings suggest that the ApoB/ApoA1 ratio may serve as a potential indicator for identifying the risk of developing CMD in participants.


Asunto(s)
Análisis de la Aleatorización Mendeliana , Isquemia Miocárdica , Humanos , Estudio de Asociación del Genoma Completo , Biomarcadores , Factores de Riesgo
7.
Brain Behav Immun ; 115: 143-156, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37848095

RESUMEN

Growing evidence suggests that neurovascular dysfunction characterized by blood-brain barrier (BBB) breakdown underlies the development of psychiatric disorders, such as major depressive disorder (MDD). Tight junction (TJ) proteins are critical modulators of homeostasis and BBB integrity. TJ protein Claudin-5 is the most dominant BBB component and is downregulated in numerous depression models; however, the underlying mechanisms remain elusive. Here, we demonstrate a molecular basis of BBB breakdown that links stress and depression. We implemented an animal model of depression, chronic unpredictable mild stress (CUMS) in male C57BL/6 mice, and showed that hippocampal BBB breakdown was closely associated with stress vulnerability. Concomitantly, we found that dysregulated Cldn5 level coupled with repression of the histone methylation signature at its promoter contributed to stress-induced BBB dysfunction and depression. Moreover, histone methyltransferase enhancer of zeste homolog 2 (EZH2) knockdown improved Cldn5 expression and alleviated depression-like behaviors by suppressing the tri-methylation of lysine 27 on histone 3 (H3K27me3) in chronically stressed mice. Furthermore, the stress-induced excessive transfer of peripheral cytokine tumor necrosis factor-α (TNF-α) into the hippocampus was prevented by Claudin-5 overexpression and EZH2 knockdown. Interestingly, antidepressant treatment could inhibit H3K27me3 deposition at the Cldn5 promoter, reversing the loss of the encoded protein and BBB damage. Considered together, these findings reveal the importance of the hippocampal EZH2-Claudin-5 axis in regulating neurovascular function and MDD development, providing potential therapeutic targets for this psychiatric illness.


Asunto(s)
Barrera Hematoencefálica , Trastorno Depresivo Mayor , Humanos , Masculino , Ratones , Animales , Barrera Hematoencefálica/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Histonas/metabolismo , Claudina-5/genética , Claudina-5/metabolismo , Depresión/metabolismo , Trastorno Depresivo Mayor/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Ratones Endogámicos C57BL
8.
J Chem Phys ; 161(1)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38958161

RESUMEN

The evaporation-induced deposition pattern of the linear diblock copolymer solution has attracted attention in recent years. Given its critical applications, we study deposition patterns of the linear diblock copolymer solution nanodroplet on a solid surface (the wall) by molecular dynamics simulations. This study focuses on the influence of the nonbonded interaction strength, including the interaction between the wall and polymer blocks (ɛAW and ɛBW), the interaction between the solvent and the wall (ɛSW), and the interaction between polymer blocks (ɛAB). Conditions leading to diverse deposition patterns are explored, including the coffee-ring and the volcano-like structures. The formation of the coffee-ring structure is attributed to receding interfaces, the heterogeneity inside the droplet, and the self-assembly of polymer chains. This study contributes to the establishment of guidelines for designing deposition patterns of the linear diblock copolymer solution nanodroplet, which facilitates practical applications such as inkjet printing.

9.
J Chem Phys ; 160(14)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38591682

RESUMEN

Designing homogeneous networks is considered one typical strategy for solving the problem of strength and toughness conflict of polymer network materials. Experimentalists have proposed the hypothesis of obtaining a structurally homogeneous hydrogel by crosslinking tetra-armed polymers, whose homogeneity was claimed to be verified by scattering characterization and other methods. Nevertheless, it is highly desirable to further evaluate this issue from other perspectives. In this study, a coarse-grained molecular dynamics simulation coupled with a stochastic reaction model is applied to reveal the topological structure of a polymer network synthesized by tetra-armed monomers as precursors. Two different scenarios, distinguished by whether internal cross-linking is allowed, are considered. We introduce the Dijkstra algorithm from graph theory to precisely characterize the network structure. The microscopic features of the network structure, e.g., loop size, dispersity, and size distribution, are obtained via the Dijkstra algorithm. By comparing the two reaction scenarios, Scenario II exhibits an overall more idealized structure. Our results demonstrate the feasibility of the Dijkstra algorithm for precisely characterizing the polymer network structure. We expect this work will provide a new insight for the evaluation and description of gel networks and further help to reveal the dynamic process of network formation.

10.
Molecules ; 29(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38398616

RESUMEN

Phytopathogenic fungi cause plant diseases and economic losses in agriculture. To efficiently control plant pathogen infections, a total of 19 spirotryprostatin A derivatives and 26 spirooxindole derivatives were designed, synthesized, and tested for their antifungal activity against ten plant pathogens. Additionally, the intermediates of spirooxindole derivatives were investigated, including proposing a mechanism for diastereoselectivity and performing amplification experiments. The bioassay results demonstrated that spirotryprostatin A derivatives possess good and broad-spectrum antifungal activities. Compound 4d exhibited excellent antifungal activity in vitro, equal to or higher than the positive control ketoconazole, against Helminthosporium maydis, Trichothecium roseum, Botrytis cinerea, Colletotrichum gloeosporioides, Fusarium graminearum, Alternaria brassicae, Alternaria alternate, and Fusarium solan (MICs: 8-32 µg/mL). Compound 4k also displayed remarkable antifungal activity against eight other phytopathogenic fungi, including Fusarium oxysporium f. sp. niveum and Mycosphaerella melonis (MICs: 8-32 µg/mL). The preliminary structure-activity relationships (SARs) were further discussed. Moreover, molecular docking studies revealed that spirotryprostatin A derivatives anchored in the binding site of succinate dehydrogenase (SDH). Therefore, these compounds showed potential as natural compound-based chiral fungicides and hold promise as candidates for further enhancements in terms of structure and properties.


Asunto(s)
Antifúngicos , Benzopiranos , Fungicidas Industriales , Nitrilos , Oxindoles , Piperazinas , Compuestos de Espiro , Antifúngicos/química , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Fungicidas Industriales/farmacología
11.
Yi Chuan ; 46(4): 279-289, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38632091

RESUMEN

H2A.Z, one of the most well-known variants of histone H2A, has been extensively investigated on its dual roles in gene transcription in recent years. In this review, we focus on the intricate involvement of H2A.Z in transcriptional regulation, including the assembly of distinct H2A.Z subtypes, post-translational modifications and genomic distributions. Emphasis is placed on the biological and pathophysiological implications, particularly in tumorigenesis and nervous system development. We summarize the dynamic regulatory mechanisms governing H2A.Z deposition or eviction on chromatin to provide insights for understanding the diversity of histone variants and promoting the search of new targets in concerned disease diagnosis and treatment.


Asunto(s)
Histonas , Nucleosomas , Histonas/metabolismo , Cromatina , Regulación de la Expresión Génica , Genoma
12.
Angew Chem Int Ed Engl ; : e202405290, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818654

RESUMEN

Catalytic enantioselective alkenylation of aldehydes with easily accessible alkenyl halides promoted by a chiral cobalt complex derived from a newly developed tridentate bisoxazolinephosphine is presented. Such processes represent an unprecedented reaction pathway for cobalt catalysis and a general approach that enable rapid construction of highly diversified enantioenriched allylic alcohols containing a 1,1-, 1,2-disubstituted and trisubstituted alkene as well as axial stereogenicity in up to 99 % yield and 99 : 1 er without the need of preformation of alkenyl-metal reagents. DFT calculations revealed the origin of enantioselectivity.

13.
J Biol Chem ; 298(9): 102295, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35872015

RESUMEN

The chromatin-associated high mobility group protein N2 (HMGN2) cofactor regulates transcription factor activity through both chromatin and protein interactions. Hmgn2 expression is known to be developmentally regulated, but the post-transcriptional mechanisms that regulate Hmgn2 expression and its precise roles in tooth development remain unclear. Here, we demonstrate that HMGN2 inhibits the activity of multiple transcription factors as a general mechanism to regulate early development. Bimolecular fluorescence complementation, pull-down, and coimmunoprecipitation assays show that HMGN2 interacts with the transcription factor Lef-1 through its HMG-box domain as well as with other early development transcription factors, Dlx2, FoxJ1, and Pitx2. Furthermore, EMSAs demonstrate that HMGN2 binding to Lef-1 inhibits its DNA-binding activity. We found that Pitx2 and Hmgn2 associate with H4K5ac and H3K4me2 chromatin marks in the proximal Dlx2 promoter, demonstrating Hmgn2 association with open chromatin. In addition, we demonstrate that microRNAs (miRs) mir-23a and miR-23b directly target Hmgn2, promoting transcriptional activation at several gene promoters, including the amelogenin promoter. In vivo, we found that decreased Hmgn2 expression correlates with increased miR-23 expression in craniofacial tissues as the murine embryo develops. Finally, we show that ablation of Hmgn2 in mice results in increased amelogenin expression because of increased Pitx2, Dlx2, Lef-1, and FoxJ1 transcriptional activity. Taken together, our results demonstrate both post-transcriptional regulation of Hmgn2 by miR-23a/b and post-translational regulation of gene expression by Hmgn2-transcription factor interactions. We conclude that HMGN2 regulates tooth development through its interaction with multiple transcription factors.


Asunto(s)
Amelogénesis , Regulación de la Expresión Génica , Proteína HMGN2 , Proteínas de Homeodominio , Factor de Unión 1 al Potenciador Linfoide , Factores de Transcripción , Transcripción Genética , Amelogénesis/genética , Amelogenina/genética , Animales , Cromatina/metabolismo , Proteína HMGN2/genética , Proteína HMGN2/metabolismo , Proteínas de Homeodominio/metabolismo , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción/metabolismo , Proteína del Homeodomínio PITX2
14.
Development ; 147(11)2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32439755

RESUMEN

Epithelial signaling centers control epithelial invagination and organ development, but how these centers are specified remains unclear. We report that Pitx2 (the first transcriptional marker for tooth development) controls the embryonic formation and patterning of epithelial signaling centers during incisor development. We demonstrate using Krt14Cre /Pitx2flox/flox (Pitx2cKO ) and Rosa26CreERT/Pitx2flox/flox mice that loss of Pitx2 delays epithelial invagination, and decreases progenitor cell proliferation and dental epithelium cell differentiation. Developmentally, Pitx2 regulates formation of the Sox2+ labial cervical loop (LaCL) stem cell niche in concert with two signaling centers: the initiation knot and enamel knot. The loss of Pitx2 disrupted the patterning of these two signaling centers, resulting in tooth arrest at E14.5. Mechanistically, Pitx2 transcriptional activity and DNA binding is inhibited by Sox2, and this interaction controls gene expression in specific Sox2 and Pitx2 co-expression progenitor cell domains. We demonstrate new transcriptional mechanisms regulating signaling centers by Pitx2, Sox2, Lef1 and Irx1.


Asunto(s)
Células Epiteliales/metabolismo , Proteínas de Homeodominio/metabolismo , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Proliferación Celular , Esmalte Dental/metabolismo , Embrión de Mamíferos/metabolismo , Células Epiteliales/citología , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Proteínas de Homeodominio/genética , Factor de Unión 1 al Potenciador Linfoide/genética , Ratones , Ratones Noqueados , Odontogénesis , Factores de Transcripción SOXB1/genética , Nicho de Células Madre , Células Madre/citología , Células Madre/metabolismo , Diente/citología , Diente/crecimiento & desarrollo , Diente/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Proteínas Señalizadoras YAP , Proteína del Homeodomínio PITX2
15.
Soft Matter ; 19(32): 6176-6182, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37551147

RESUMEN

Highly conductive and stretchable polymer conductors fabricated from conductive fillers and stretchable polymers are urgently needed in flexible electronics, implants, soft robotics, etc. However, polymer conductors encounter the conductivity-stretchability dilemma, in which high-load fillers needed for high conductivity always result in the stiffness of materials. Herein, we propose a new design of highly conductive and stretchable polymer conductors with low-load nanoparticles (NPs). The design is achieved by the self-assembly of surface-modified NPs to efficiently form robust conductive pathways. We employ computer simulations to elucidate the self-assembly of the NPs in the polymer matrices under equilibrium and tensile states. The conductive pathways retain 100% percolation probability even though the loading of the NPs is lowered to ∼2% volume. When the tensile strain reaches 400%, the percolation probability of the ∼2% NP system is still greater than 25%. The theoretical prediction suggests a way for advancing flexible conductive materials.

16.
Soft Matter ; 19(20): 3570-3579, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37159247

RESUMEN

The formation and transformation of defects in confined liquid crystals are fascinating fundamental problems in soft matter. Here, we use molecular dynamics (MD) simulations to study ellipsoidal liquid crystals (LCs) confined in a spherical cavity, which significantly affects the orientation and translation of LC molecules near the surface. The liquid-crystal droplet can present the isotropic to smectic-B phase transition through the smectic-A phase, as the number density of the LC molecules increases. We further find the change of LC structure from bipolar to watermelon-striped during the phase transition from smectic-A (SmA) to smectic-B (SmB) phases. Our results reveal the transition from bipolar defects to the inhomogeneous structures with the coexistence of nematic and smectic phases in smectic liquid-crystal droplets. We also study the influence of the sphere size in the range of 10σ0 ≤ Rsphere ≤ 50σ0 on the structural inhomogeneities. It shows a weak dependence on the sphere size. We further focus on how the structures can be affected by the interaction strength εGB-LJ. Interestingly, we find the watermelon-striped structure can be changed into a configuration with four defects at the vertices of a tetrahedron upon increasing the interaction strength. The liquid crystals at a strong interaction strength of εGB-LJ = 10.0ε0 show the two-dimensional nematic phase at the surface. We further present an explanation for the origin of the striped-pattern formation. Our results highlight the potential for using confinement to control these defects and their associated nanostructural heterogeneity.

17.
Europace ; 25(10)2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37712716

RESUMEN

AIMS: The clinical correlates and outcomes of asymptomatic atrial fibrillation (AF) in hospitalized patients are largely unknown. We aimed to investigate the clinical correlates and in-hospital outcomes of asymptomatic AF in hospitalized Chinese patients. METHODS AND RESULTS: We conducted a cross-sectional registry study of inpatients with AF enrolled in the Improving Care for Cardiovascular Disease in China-Atrial Fibrillation Project between February 2015 and December 2019. We investigated the clinical characteristics of asymptomatic AF and the association between the clinical correlates and the in-hospital outcomes of asymptomatic AF. Asymptomatic and symptomatic AF were defined according to the European Heart Rhythm Association score. Asymptomatic patients were more commonly males (56.3%) and had more comorbidities such as hypertension (57.4%), diabetes mellitus (18.6%), peripheral artery disease (PAD; 2.3%), coronary artery disease (55.5%), previous history of stroke/transient ischaemic attack (TIA; 17.9%), and myocardial infarction (MI; 5.4%); however, they had less prevalent heart failure (9.6%) or left ventricular ejection fractions ≤40% (7.3%). Asymptomatic patients were more often hospitalized with a non-AF diagnosis as the main diagnosis and were more commonly first diagnosed with AF (23.9%) and long-standing persistent/permanent AF (17.0%). The independent determinants of asymptomatic presentation were male sex, long-standing persistent AF/permanent AF, previous history of stroke/TIA, MI, PAD, and previous treatment with anti-platelet drugs. The incidence of in-hospital clinical events such as all-cause death, ischaemic stroke/TIA, and acute coronary syndrome (ACS) was higher in asymptomatic patients than in symptomatic patients, and asymptomatic clinical status was an independent risk factor for in-hospital all-cause death, ischaemic stroke/TIA, and ACS. CONCLUSION: Asymptomatic AF is common among hospitalized patients with AF. Asymptomatic clinical status is associated with male sex, comorbidities, and a higher risk of in-hospital outcomes. The adoption of effective management strategies for patients with AF should not be solely based on clinical symptoms.


Asunto(s)
Fibrilación Atrial , Isquemia Encefálica , Enfermedades Cardiovasculares , Ataque Isquémico Transitorio , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Masculino , Femenino , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/epidemiología , Fibrilación Atrial/terapia , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/terapia , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/complicaciones , Ataque Isquémico Transitorio/epidemiología , Estudios Transversales , Mejoramiento de la Calidad , Pronóstico , Factores de Riesgo
18.
Environ Res ; 218: 114783, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36372150

RESUMEN

Fluctuation disturbance of organic loading rate (OLR) is common in actual anaerobic digestion (AD), but its effects on AD of municipal sludge gets little attention. This study investigated the responses of reactor performance and active microbial community in mesophilic and thermophilic AD of municipal sludge before, during and after OLR periodic fluctuation disturbance. The performance of both reactors were similar before and after disturbance although some parameter values changed during the disturbance, which indicated their enough buffer capacity to OLR periodic fluctuation. Different microbial community at RNA level was observed in the two reactors. When the OLR disturbance commenced, the microbial community changed greatly in thermophilic AD. Error and attack tolerance of the microbial network was analyzed in order to learn the response mechanisms to OLR disturbance. The results assisted that the thermophilic microbial community was more vulnerable, but the reactor performance of which could be maintained using the functional redundancy strategy under OLR fluctuation disturbance.


Asunto(s)
Microbiota , Aguas del Alcantarillado , Anaerobiosis , Reactores Biológicos , Metano , Temperatura
19.
J Chem Phys ; 159(10)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37681699

RESUMEN

Confined liquid crystals (LCs) exhibit complex and intriguing structures, which are fascinating fundamental problems in soft matter. The helical structure of cylindrical cavities is of great importance in LC studies, particularly for their application in optical devices. In this study, we employ molecular dynamics simulations to explore the behavior of achiral smectic-B LCs confined in narrow cylindrical cavities, where geometric frustration plays an important role. By increasing the cylinder size, LCs exhibit a transition from multi-helical to layered structures. Notably, we observe two stable structures, namely the helical structure and the layered structure, at moderate cylinder size. We also investigate the effects of the arrangement of cylindrical wall particles (hexagonal or square array) and anchoring strength on the LC structure. Our findings reveal that both the hexagonal array and strong anchoring strength promote the formation of helical structures. Our study provides novel insights into the confinement physics of LCs and highlights the potential for achieving helical structures in achiral LCs, which will expand the future applications of LCs.

20.
J Chem Phys ; 158(10): 104902, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36922133

RESUMEN

Normally, defects in two-dimensional, circular, confined liquid crystals can be classified into four types based on the position of singularities formed by liquid crystal molecules, i.e., the singularities located inside the circle, at the boundary, outside the circle, and outside the circle at infinity. However, it is considered difficult for small aspect ratio liquid crystals to generate all these four types of defects. In this study, we use molecular dynamics simulation to investigate the defect formed in Gay-Berne, ellipsoidal liquid crystals, with small aspect ratios confined in a circular cavity. As expected, we only find two types of defects (inside the circle and at the boundary) in circular, confined, Gay-Berne ellipsoids under static conditions at various densities, aspect ratios, and interactions between the wall and liquid crystals. However, when introducing an external field to the system, four types of defects can be observed. With increasing the strength of the external field, the singularities in the circular, confined system change from the inside to the boundary and the outside, and the farthest position that the singularities can reach depends on the strength of the external field. We further introduce an alternating, triangular wave, external field to the system to check if we can observe the transformation of different defects within an oscillating period. We find that the position of the singularities greatly depends on the oscillating intensity and oscillating period. By changing the oscillating intensity and oscillating period of the external field, the defect types can be adjusted, and the transformation between different defects can be easily observed. This provides a feasible way to modulate liquid crystal defects and investigate the transformation between different defects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA