Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(12): 8298-8307, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38498306

RESUMEN

Antiferroelectric materials with an electrocaloric effect (ECE) have been developed as promising candidates for solid-state refrigeration. Despite the great advances in positive ECE, reports on negative ECE remain quite scarce because of its elusive physical mechanism. Here, a giant negative ECE (maximum ΔS ∼ -33.3 J kg-1 K-1 with ΔT ∼ -11.7 K) is demonstrated near room temperature in organometallic perovskite, iBA2EA2Pb3I10 (1, where iBA = isobutylammonium and EA = ethylammonium), which is comparable to the greatest ECE effects reported so far. Moreover, the ECE efficiency ΔS/ΔE (∼1.85 J cm kg-1 K-1 kV-1) and ΔT/ΔE (∼0.65 K cm kV-1) are almost 2 orders of magnitude higher than those of classical inorganic ceramic ferroelectrics and organic polymers, such as BaTiO3, SrBi2Ta2O9, Hf1/2Zr1/2O2, and P(VDF-TrFE). As far as we know, this is the first report on negative ECE in organometallic hybrid perovskite ferroelectric. Our experimental measurement combined with the first-principles calculations reveals that electric field-induced antipolar to polar structural transformation results in a large change in dipolar ordering (from 6.5 to 45 µC/cm2 under the ΔE of 18 kV/cm) that is closely related to the entropy change, which plays a key role in generating such giant negative ECE. This discovery of field-induced negative ECE is unprecedented in organometallic perovskite, which sheds light on the exploration of next-generation refrigeration devices with high cooling efficiency.

2.
Small ; 20(24): e2310529, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38148294

RESUMEN

2D organic-inorganic hybrid perovskites (OIHPs) have become one of the hottest research topics due to their excellent environmental stability and unique optoelectronic properties. Recently, the ferroelectricity and thermochromism of 2D OIHPs have attracted increasing interests. Integrating ferroelectricity and thermochromism into perovskites can significantly promote the development of multichannel intelligent devices. Here, a novel 2D Dion-Jacobson OIHP of the formula (3AMP)PbI4 (where 3AMP is 3-(aminomethyl)pyridinium) is reported, which has a remarkable spontaneous polarization value (Ps) of 15.6 µC cm-2 and interesting thermochromism. As far it is known, such a large Ps value is the highest for 2D OIHPs recorded so far. These findings will inspire further exploration and application of multifunctional perovskites.

3.
Opt Express ; 32(3): 4334-4345, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38297637

RESUMEN

Integrated on-chip femtosecond (fs) laser optoelectronic system, with photodetector as a critical component for light-electrical signal conversion, is a long-sought-after goal for a wide range of frontier applications. However, the high laser peak intensity and complicated nanophotonic waveguide structure of on-chip fs laser are beyond the detectability and integrability of conventional photodetectors. Therefore, flexible photodetector with the response on intense fs laser is in urgent needs. Herein, we demonstrate the first (to our knowledge) two-photon absorption (TPA) flexible photodetector based on the strong TPA nonlinearity of layered hybrid perovskite (IA)2(MA)2Pb3Br10, exhibiting efficient sub-bandgap response on the infrared fs laser at 700-1000 nm. High saturation intensity up to ∼3.8 MW/cm2 is achieved. The device also shows superior current stability even after bending for 1000 cycles. This work may pave the new way for the application of flexible optoelectronics specialized in integrated fs-laser detection.

4.
Inorg Chem ; 63(24): 11340-11346, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38842098

RESUMEN

Two-dimensional (2D) metal-halide perovskites have shown broad application prospects in the field of optoelectronic detection. The presence of the natural quantum-well structure results in strong anisotropy of physical properties, while studies on anisotropic X-ray responses remain insufficient. Here, we present an intriguing anisotropy of X-ray-responsive behaviors in a 2D halide perovskite, (t-ACH)2(DMA)Pb2Br7 (1, where t-ACH is trans-4-(aminomethyl)cyclohexanecarboxylate and DMA is dimethylamine), in which the secondary amine DMA+ cation with a large ionic radius locates inside the perovskite cage to form inorganic frameworks. The alternative alignment of inorganic slabs and organic bilayers creates a typical quantum-well architecture, which accounts for the generation of photoelectronic anisotropy. High-quality crystals of 1 exhibit notable semiconducting properties with a large µτ product (1.9 × 10-4 cm2 V-1). Intriguingly, 1 has better X-ray detection sensitivity (∼569.9 µC Gyair-1 cm-2) along the in-plane direction, which is attributed to its excellent charge carrier transport performance in this direction. Conversely, the higher resistance stemming from the organic barrier results in a lower detection limit along the out-of-plane direction (∼78.1 nGyair s-1), much lower than the medical diagnostic criteria (∼5.5 µGyair s-1). This work might open up new possibilities for the creative use of hybrid perovskites in direct X-ray detection.

5.
Environ Res ; 245: 117995, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38145731

RESUMEN

BACKGROUND: The increasing problem of bacterial resistance, particularly with quinolone-resistant Escherichia coli (QnR eco) poses a serious global health issue. METHODS: We collected data on QnR eco resistance rates and detection frequencies from 2014 to 2021 via the China Antimicrobial Resistance Surveillance System, complemented by meteorological and socioeconomic data from the China Statistical Yearbook and the China Meteorological Data Service Centre (CMDC). Comprehensive nonparametric testing and multivariate regression models were used in the analysis. RESULT: Our analysis revealed significant regional differences in QnR eco resistance and detection rates across China. Along the Hu Huanyong Line, resistance rates varied markedly: 49.35 in the northwest, 54.40 on the line, and 52.30 in the southeast (P = 0.001). Detection rates also showed significant geographical variation, with notable differences between regions (P < 0.001). Climate types influenced these rates, with significant variability observed across different climates (P < 0.001). Our predictive model for resistance rates, integrating climate and healthcare factors, explained 64.1% of the variance (adjusted R-squared = 0.641). For detection rates, the model accounted for 19.2% of the variance, highlighting the impact of environmental and healthcare influences. CONCLUSION: The study found higher resistance rates in warmer, monsoon climates and areas with more public health facilities, but lower rates in cooler, mountainous, or continental climates with more rainfall. This highlights the strong impact of climate on antibiotic resistance. Meanwhile, the predictive model effectively forecasts these resistance rates using China's diverse climate data. This is crucial for public health strategies and helps policymakers and healthcare practitioners tailor their approaches to antibiotic resistance based on local environmental conditions. These insights emphasize the importance of considering regional climates in managing antibiotic resistance.


Asunto(s)
Proteínas de Escherichia coli , Quinolonas , Escherichia coli , China/epidemiología , Farmacorresistencia Bacteriana , Antibacterianos/farmacología
6.
J Therm Biol ; 120: 103786, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38428103

RESUMEN

Heat stress is a common environmental factor in livestock breeding that has been shown to impact the development of antibiotic resistance within the gut microbiota of both human and animals. However, studies investigating the effect of temperature on antibiotic resistance in Enterococcus isolates remain limited. In this study, specific pathogen free (SPF) mice were divided into a control group maintained at normal temperature and an experimental group subjected to daily 1-h heat stress at 38 °C, respectively. Gene expression analysis was conducted to evaluate the activation of heat shock responsive genes in the liver of mice. Additionally, the antibiotic-resistant profile and antibiotic resistant genes (ARGs) in fecal samples from mice were analyzed. The results showed an upregulation of heat-inducible proteins HSP27, HSP70 and HSP90 following heat stress exposure, indicating successful induction of cellular stress within the mice. Furthermore, heat stress resulted in an increase in the proportion of erythromycin-resistant Enterococcus isolates, escalating from 0 % to 0.23 % over a 30-day duration of heat stress. The resistance of Enterococcus isolates to erythromycin also had a 128-fold increase in minimum inhibitory concentration (MIC) within the heated-stressed group compared to the control group. Additionally, a 2∼8-fold rise in chloramphenicol MIC was observed among these erythromycin-resistant Enterococcus isolates. The acquisition of ermB genes was predominantly responsible for mediating the erythromycin resistance in these Enterococcus isolates. Moreover, the abundance of macrolide, lincosamide and streptogramin (MLS) resistant-related genes in the fecal samples from the heat-stressed group exhibited a significant elevation compared to the control group, primarily driven by changes in bacterial community composition, especially Enterococcaceae and Planococcaceae, and the transfer of mobile genetic elements (MGEs), particularly insertion elements. Collectively, these results highlight the role of environmental heat stress in promoting antibiotic resistance in Enterococcus isolates and partly explain the increasing prevalence of erythromycin-resistant Enterococcus isolates observed among animals in recent years.


Asunto(s)
Enterococcus , Eritromicina , Humanos , Animales , Ratones , Eritromicina/farmacología , Enterococcus/genética , Antibacterianos/farmacología , Heces , Respuesta al Choque Térmico
7.
Angew Chem Int Ed Engl ; 63(14): e202401221, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38342759

RESUMEN

Metal-free molecular antiferroelectric (AFE) holds a promise for energy storage on account of its unique physical attributes. However, it is challenging to explore high-curie temperature (Tc) molecular AFEs, due to the lack of design strategies regarding the rise of phase transition energy barriers. By renewing the halogen substitution strategy, we have obtained a series of high-Tc molecular AFEs of the halogen-substituted phenethylammonium bromides (x-PEAB, x=H/F/Cl/Br), resembling the binary stator-rotator system. Strikingly, the p-site halogen substitution of PEA+ cationic rotators raises their phase transition energy barrier and greatly enhances Tc up to ~473 K for Br-PEAB, on par with the record-high Tc values for molecular AFEs. As a typical case, the member 4-fluorophenethylammonium bromide (F-PEAB) shows notable AFE properties, including high Tc (~374 K) and large electric polarization (~3.2 µC/cm2). Further, F-PEAB also exhibits a high energy storage efficiency (η) of 83.6 % even around Tc, catching up with other AFE oxides. This renewing halogen substitution strategy in the molecular AFE system provides an effective way to design high-Tc AFEs for energy storage devices.

8.
J Am Chem Soc ; 145(23): 12853-12860, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37263965

RESUMEN

Chemiresistive sensing has been regarded as the key monitoring technique, while classic oxide gas detection devices always need an external power supply. In contrast, the bulk photovoltage of photoferroelectric materials could provide a controllable power source, holding a bright future in self-powered gas sensing. Herein, we present a new photoferroelectric ([n-pentylaminium]2[ethylammonium]2Pb3I10, 1), which possesses large spontaneous polarization (∼4.8 µC/cm2) and prominent visible-photoactive behaviors. Emphatically, driven by the bulk photovoltaic effect, 1 enables excellent self-powered sensing responses for NO2 at room temperature, including extremely fast response/recovery speeds (0.15/0.16 min) and high sensitivity (0.03 ppm-1). Such figures of merit are superior to those of typical inorganic systems (e.g., ZnO) using an external power supply. Theoretical calculations and in situ diffuse reflectance infrared Fourier transform spectroscopy measurements confirm the great selectivity of 1 for NO2. As far as we know, this is the first realization of ferroelectricity-driven self-powered gas detection. Our work sheds light on the self-powered sensing systems and provides a promising way to broaden the functionalities of photoferroelectrics.

9.
J Am Chem Soc ; 145(29): 16193-16199, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37462120

RESUMEN

Polarization sensitivity, which shows great potential in photoelectric detection, is expected to be significantly improved by the ferroelectric anomalous photovoltaic (APV) effect. However, it is challenging to explore new APV-active ferroelectrics due to severe polarization fatigue induced by the leakage current of photoexcited carriers. For the first time, we report a strong APV effect in a 2D hybrid perovskite ferroelectric assembled by alloying mixed organic cations, (HA)2(EA)2Pb3Br10 (1, where HA+ is n-hexylammonium and EA+ is ethylammonium), which has a large spontaneous polarization ∼3.8 µC/cm2 and high a Curie temperature ∼378 K. Its ferroelectricity allows a strong APV effect with an above-bandgap photovoltage up to 7.4 V, which exceeds its bandgap (∼2.7 eV). Most strikingly, based on the dependence on polarized-light angle, this strong APV effect renders the highest level of polarization sensitivity with a giant current ratio of ∼25, far beyond other 2D single-phase materials. This study sheds light on the exploration of APV-active ferroelectrics and inspires their future high-performance optoelectronic device applications.

10.
Small ; 19(49): e2303909, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37612806

RESUMEN

Photorefractive effect of ferroelectrics refers to the light-induced change of refractive index, which is an optical controlling avenue in holographic storage and image processing. For most ferroelectrics, however, the small photorefractive effect (10-5 -10-4 ) hinders their practical application and it is urgent to exploit new photorefractive system. Here, for the first time, strong photorefractive effects are achieved in a 2D metal-halide ferroelectric, [CH3 (CH2 )3 NH3 ]2 (CH3 NH3 )Pb2 Cl7 (1), showing large spontaneous polarization (≈4.1 µC cm-2 ) and wide optical bandgap (≈3.20 eV). Notably, under light irradiation, 1 enables a large variation of refractive indices up to ≈ 1× 10-3 , being one order higher than the existing materials and comparable to the state-of-the-art inorganic ferroelectrics. This intriguing photorefractive behavior involves with the sharp variation of polarization caused by photo-pyroelectricity. As the first report of 2D metal-halide photorefractive ferroelectric, this work sheds light on optical controlling of physical properties in electric-ordered materials.

11.
Small ; 19(23): e2207325, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36919484

RESUMEN

2D Fe-chalcogenides have drawn significant attention due to their unique structural phases and distinct properties in exploring magnetism and superconductivity. However, it remains a significant challenge to synthesize 2D Fe-chalcogenides with specific phases in a controllable manner since Fe-chalcogenides have multiple phases. Herein, a molecular sieve-assisted strategy is reported for synthesizing ultrathin 2D iron sulfide on substrates via the chemical vapor deposition method. Using a molecular sieve and tuning growth temperatures to control the partial pressures of precursor concentrations, hexagonal FeS, tetragonal FeS, and non-stoichiometric Fe7 S8 nanoflakes can be precisely synthesized. The 2D h-FeS, t-FeS, and Fe7 S8 have high conductivities of 5.4 × 105 S m-1 , 5.8 × 105 S m-1 , and 1.9 × 106 S m-1 . 2D tetragonal FeS shows a superconducting transition at 4 K. The spin reorientation at ≈30 K on the non-stoichiometric Fe7 S8 nanoflakes with ferrimagnetism up to room temperature has also been observed. The controllable synthesis of various phases of 2D iron sulfide may provide a route for synthesizing other 2D compounds with various phases.

12.
Small ; 19(16): e2207393, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36651018

RESUMEN

The bulk anomalous photovoltaic (BAPV) effect of acentric materials refers to a distinct concept from traditional semiconductor-based devices, of which the above-bandgap photovoltage hints at a promise for solar-energy conversion. However, it is still a challenge to exploit new BAPV-active systems due to the lacking of knowledge on the structural origin of this concept. BAPV effects in single crystals of a 2D lead-free double perovskite, (BBA)2 CsAgBiBr7 (1, BBA = 4-bromobenzylammonium), tailored by mixing aromatic and alkali cations in the confined architecture to form electric polarization are acquired here. Strikingly, BAPV effects manifested by above-bandgap photovoltage (VOC ) show unique attributes of directional anisotropy and positive dependence on electrode spacing. The driving source stems from orientations of the polar aromatic spacer and Cs+ ion drift, being different from the known built-in asymmetry photovoltaic heterojunctions. As the first demonstration of the BAPV effect in the double perovskites, the results will enrich the family of environmentally green BAPV-active candidates and further facilitate their new optoelectronic application.

13.
Small ; 19(34): e2301594, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37086129

RESUMEN

2D Dion-Jacobson (DJ) phase hybrid perovskites have shown great promise in the photoelectronic field owing to their outstanding optoelectronic performance and superior structural rigidity. However, DJ phase lead-free double perovskites are still a virgin land with direct X-ray detection. Herein, we have designed and synthesized a new DJ phase lead-free layered double perovskite of (HIS)2 AgSbBr8 (1, HIS2+  = histammonium). Centimeter-sized (18 × 10 × 5 mm3 ) single crystals of 1 are successfully grown via the temperature cooling technique, exhibiting remarkable semiconductive characteristics such as a high resistivity (2.2 × 1011  Ω cm), a low trap state density (3.56 × 1010 cm-3 ), and a large mobility-lifetime product (1.72 × 10-3 cm2 V-1 ). Strikingly, its single-crystal-based X-ray detector shows a high sensitivity of 223 µC Gy-1 air cm-2 under 33.3 V mm-1 , a low detection limit (84.2 nGyair s-1 ) and superior anti-fatigue. As far as we know, we firstly demonstrates the potential of 2D DJ phase lead-free hybrid double perovskite in X-ray detection, showing excellent photoelectric response and operational stability. This work will pave a promising pathway to the innovative application of hybrid perovskites for eco-friendly and efficient X-ray detection.

14.
Opt Express ; 31(5): 8428-8439, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36859957

RESUMEN

The flexible photodetector is viewed as a research hotspot for numerous advanced optoelectronic applications. Recent progress has manifested that lead-free layered organic-inorganic hybrid perovskites (OIHPs) are highly attractive to engineering flexible photodetectors due to the effective overlapping of several unique properties, including efficient optoelectronic characteristics, exceptional structural flexibility, and the absence of Pb toxicity to humans and the environment. The narrow spectral response of most flexible photodetectors with lead-free perovskites is still a big challenge to practical applications. In this work, we demonstrate the flexible photodetector based on a novel (to our knowledge) narrow-bandgap OIHP of (BA)2(MA)Sn2I7, with achieving a broadband response across an ultraviolet-visible-near infrared (UV-VIS-NIR) region as 365-1064 nm. The high responsivities of 28.4 and 2.0 × 10-2 A/W are obtained at 365 and 1064 nm, respectively, corresponding to detectives of 2.3 × 1010 and 1.8 × 107 Jones. This device also shows remarkable photocurrent stability after 1000 bending cycles. Our work indicates the huge application prospect of Sn-based lead-free perovskites in high-performance and eco-friendly flexible devices.

15.
Chemistry ; 29(33): e202300876, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37062802

RESUMEN

Two-dimensional (2D) hybrid perovskite materials have been widely used for polarization-sensitive photodetection due to their fascinating optical and physical attributes. However, studies on those materials that enable strong polarized-light activities under a weak-light condition remain quite scarce. Here, by tailoring aromatic cation into 3D prototype, we have successfully obtained a new 2D hybrid perovskite, (FPEA)2 (MA)Pb2 Br7 (1, where FPEA is 4-fluorophenethylammonium and MA is methylammonium). The alternative alignment of inorganic and organic structural components results in significant anisotropy, including optical absorption and electric conductivity. The coupling effect of these anisotropic properties in 1 gives rise to strong dichroic activities toward detecting polarized light. Especially, under weak light intensity (∼330 nW/cm2 ), it can still generate a large polarization ratio up to 1.35, which is even higher than those of some typical 2D materials (i. e., GeSe ∼1.09). Besides, single crystal-based photodetector of 1 displays fascinating detecting performances, including large photocurrent on/off ratio (∼104 ), fast response time (∼154/182 µs) and excellent antifatigued stability. These findings disclose the potentials of 1 as a robust candidate for detecting weak polarized light, which has practical applications in the field of polarized optoelectronics.


Asunto(s)
Compuestos de Calcio , Luz , Anisotropía , Conductividad Eléctrica
16.
Food Microbiol ; 109: 104151, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36309448

RESUMEN

We investigated the function of pyoverdine in the biofilm formation, motility, and spoilage potential of Pseudomonas fluorescens. We targeted and identified two major genes (pvdA and pvdE) that are involved in the biosynthesis of siderophores. We next constructed ΔpvdA and ΔpvdE mutants of P. fluorescens PF08 and found that the deletion of pyoverdine led to a biofilm-to-motivity transition as both ΔpvdA and ΔpvdE mutants displayed enhanced motility, reduced level of exopolysaccharides (EPSs), and attenuated biofilm formation. In addition, the lack of synthesis of pyoverdine promoted the spoilage of fish fillets stored at 4 °C. Based on the effect of pyoverdine deletion on the phenotype; we report that pyoverdine regulates the transcription levels of htpX, phoA, flip, flgA, and RpoS, suggesting that pyoverdine-mediated iron absorption may affect the regulation of flagellum and stress resistance. This study emphasizes the important role of pyoverdine in the formation of biofilm, motility, and spoilage of P. fluorescens PF08.


Asunto(s)
Pseudomonas fluorescens , Sideróforos , Animales , Pseudomonas fluorescens/genética , Biopelículas
17.
Angew Chem Int Ed Engl ; 62(39): e202305310, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37486543

RESUMEN

Photoferroelectrics, especially emerging halide perovskite ferroelectrics, have motivated tremendous interests owing to their fascinating bulk photovoltaic effect (BPVE) and cross-coupled functionalities. However, solid solutions of halide perovskite photoferroelectrics with controllable structure and enhanced performance are scarcely explored. Herein, through mixing cage cation, a homogeneous halide perovskite photoferroelectric PA2 FAx MA1-x Pb2 Br7 solid solution (PA, FA and MA are CH3 CH2 CH2 NH3 + , NH2 CHNH2 + and CH3 NH3 + , 0≤x≤1) has been developed, which demonstrates tunable Curie temperature in a wide range of 263-323 K and excellent optoelectrical features. As the component adjusted to x=0.7, the bulk crystal demonstrates ultrahigh pyroelectric coefficient up to 1.48 µC cm-2 K-1 around room temperature. Strikingly, benefiting from the light-induced pyroelectricity and remarkable BPVE, a self-powered and sensitive photodetector based solid solution crystals with boosted responsivity and detectivity over than 1300 % has been achieved. This pioneering work sheds light on the exploration of photoferroelectric solid solutions towards high-performance photoelectronic devices.

18.
Angew Chem Int Ed Engl ; 62(17): e202300028, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36809685

RESUMEN

As a momentum-independent spin configuration, persistent spin texture (PST) could avoid spin relaxation and play an advantageous role in spin lifetime. Nevertheless, manipulation of PST is a challenge due to the limited materials and ambiguous structure-property relationships. Herein, we present electrically switchable PST in a new 2D perovskite ferroelectric, (PA)2 CsPb2 Br7 (where PA is n-pentylammonium), which has a high Curie temperature of 349 K, evident spontaneous polarization (3.2 µC cm-2 ) and a low coercive electric field of 5.3 kV cm-1 . The combination of symmetry-breaking in ferroelectrics and effective spin-orbit field facilitates intrinsic PST in the bulk and monolayer structure models. Strikingly, the directions of spin texture are reversible by switching the spontaneous electric polarization. This electric switching behavior relates to the tilting of PbBr6 octahedra and the reorientation of organic PA+ cations. Our studies on ferroelectric PST of 2D hybrid perovskites afford a platform for electrical spin texture manipulation.

19.
Angew Chem Int Ed Engl ; 62(45): e202309416, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37733923

RESUMEN

Ferroelectric photovoltaics driven by spontaneous polarization (Ps ) holds a promise for creating the next-generation optoelectronics, spintronics and non-volatile memories. However, photoactive ferroelectrics are quite scarce in single homogeneous phase, owing to the severe Ps fatigue caused by leakage current of photoexcited carriers. Here, through combining inorganic and organic components as building blocks, we constructed a series of ferroelectric semiconductors of 2D hybrid perovskites, (HA)2 (MA)n-1 Pbn Br3n+1 (n=1-5; HA=hexylamine and MA=methylamine). It is intriguing that their Curie temperatures are greatly enhanced by reducing the thickness of inorganic frameworks from MAPbBr3 (n=∞, Tc =239 K) to n=2 (Tc =310 K, ΔT=71 K). Especially, on account of the coupling of room-temperature ferroelectricity (Ps ≈1.5 µC/cm2 ) and photoconductivity, n=3 crystal wafer was integrated as channel field effect transistor that shows excellent a large short-circuit photocurrent ≈19.74 µA/cm2 . Such giant photocurrents can be modulated through manipulating gate voltage in a wide range (±60 V), exhibiting gate-tunable memory behaviors of three current states ("-1/0/1" states). We believe that this work sheds light on further exploration of ferroelectric materials toward new non-volatile memory devices.

20.
J Am Chem Soc ; 144(44): 20315-20322, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36305794

RESUMEN

Molecular ferroelectric films (MFFs) offer a good platform for miniaturized electronic devices, which are inseparable from their multiaxial nature. Despite great studies, soft MFFs with broadband photo-electroactivity still remain a huge blank as the photoexcited leakage current will severely deteriorate ferroelectricity, hindering their optoelectronic applications. Here, we constructed the multiaxial MFF of HA2EA2Pb3I10 (1, where EA = ethylammonium and HA = n-hexylammonium) in 2D multilayered perovskites. Eight equivalent polarization directions were observed in 1, as verified by its symmetry breaking (i.e., 4/mmmFm species), which is the maximum among 2D multilayered perovskites and even more than that of classic ceramic BaTiO3. Specially, spin-coated flexible MFFs of 1 are approximately orientated parallel to layered perovskite frameworks, exhibiting in-plane spontaneous polarization (Ps = 1.8 µC/cm2) and broadband absorption (∼1.83 eV). In addition, self-powered broadband detection (∼0.55 µA/cm2 at 637 nm illumination) was achieved on the soft films, revealing their potential for flexible and wearable electronic devices. Our result sheds light on the design of flexible photoelectronic devices and provides an effective way to expand the applications of 2D molecular ferroelectric materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA