RESUMEN
The molecular repertoire of the mucosa-associated lymphoid tissue (MALT) in the olfactory rosette in most teleost fish is unknown. Here we present the basal transcriptome of the olfactory rosette of Atlantic salmon (Salmo salar). To investigate its mucosal immune features, we performed a comparative transcriptomic analysis with the gills, one of the most studied organs possessing MALT. Pathway enrichment revealed that cytokine-cytokine interaction and the neuroactive ligand-receptor interaction pathways were at the core of the shared similarity between the two organs. The immunological features of the two organs were further characterised by the overrepresentation of several immune-related pathways, particularly important for pathogen recognition. The immunological differences between the two organs were underlined with the differential regulation of markers for interleukins, extracellular matrix, antimicrobial peptides, and complement. The basal transcriptome of Atlantic salmon olfactory rosette is a valuable molecular toolbox that will advance our understanding of nasal immunity in teleost fish.
Asunto(s)
Salmo salar , Transcriptoma , Animales , Branquias , Perfilación de la Expresión Génica , CitocinasRESUMEN
We report the histological and transcriptomic changes in the olfactory organ of Atlantic cod exposed to Francisella noatunensis. Experimental infection was performed at either 12 °C or 17 °C. Infected fish presented the classic gross pathologies of francisellosis. Nasal morpho-phenotypic parameters were not significantly affected by elevated temperature and infection, except for the number of mucus cells in the 12 °C group seven weeks after the challenge. A higher number of genes were altered through time in the group reared at 17 °C. At termination, the nasal transcriptome of infected fish in both groups was similar to the control. When both infected groups were compared, 754 DEGs were identified, many of which were involved in signalling, defence, transmembrane and enzymatic processes. In conclusion, the study reveals that elevated temperature could trigger responses in the olfactory organ of Atlantic cod and shape the nasal response to F. noatunensis infection.
Asunto(s)
Francisella , Gadus morhua , Animales , Gadus morhua/genética , Temperatura , Francisella/genéticaRESUMEN
BACKGROUND: Novel commercial kits for whole genome library preparation for next-generation sequencing on Illumina platforms promise shorter workflows, lower inputs and cost savings. Time savings are achieved by employing enzymatic DNA fragmentation and by combining end-repair and tailing reactions. Fewer cleanup steps also allow greater DNA input flexibility (1 ng-1 µg), PCR-free options from 100 ng DNA, and lower price as compared to the well-established sonication and tagmentation-based DNA library preparation kits. RESULTS: We compared the performance of four enzymatic fragmentation-based DNA library preparation kits (from New England Biolabs, Roche, Swift Biosciences and Quantabio) to a tagmentation-based kit (Illumina) using low input DNA amounts (10 ng) and PCR-free reactions with 100 ng DNA. With four technical replicates of each input amount and kit, we compared the kits' fragmentation sequence-bias as well as performance parameters such as sequence coverage and the clinically relevant detection of single nucleotide and indel variants. While all kits produced high quality sequence data and demonstrated similar performance, several enzymatic fragmentation methods produced library insert sizes which deviated from those intended. Libraries with longer insert lengths performed better in terms of coverage, SNV and indel detection. Lower performance of shorter-insert libraries could be explained by loss of sequence coverage to overlapping paired-end reads, exacerbated by the preferential sequencing of shorter fragments on Illumina sequencers. We also observed that libraries prepared with minimal or no PCR performed best with regard to indel detection. CONCLUSIONS: The enzymatic fragmentation-based DNA library preparation kits from NEB, Roche, Swift and Quantabio are good alternatives to the tagmentation based Nextera DNA flex kit from Illumina, offering reproducible results using flexible DNA inputs, quick workflows and lower prices. Libraries with insert DNA fragments longer than the cumulative sum of both read lengths avoid read overlap, thus produce more informative data that leads to strongly improved genome coverage and consequently also increased sensitivity and precision of SNP and indel detection. In order to best utilize such enzymatic fragmentation reagents, researchers should be prepared to invest time to optimize fragmentation conditions for their particular samples.
Asunto(s)
Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Biblioteca de Genes , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: The thymus is a highly specialized organ of the immune system where T cell precursors develop and differentiate into self-tolerant CD4+ or CD8+ T cells. No studies to date have investigated how the human transcriptome profiles differ, between T cells still residing in the thymus and T cells in the periphery. RESULTS: We have performed high-throughput RNA sequencing to characterize the transcriptomes of primary single positive (SP) CD4+ and CD8+ T cells from infant thymic tissue, as well as primary CD4+ and CD8+ T cells from infant and adult peripheral blood, to enable the comparisons across tissues and ages. In addition, we have assessed the expression of candidate genes related to autoimmune diseases in thymic CD4+ and CD8+ T cells. The thymic T cells showed the largest number of uniquely expressed genes, suggesting a more diverse transcription in thymic T cells. Comparing T cells of thymic and blood origin, revealed more differentially expressed genes, than between infant and adult blood. Functional enrichment analysis revealed an over-representation of genes involved in cell cycle and replication in thymic T cells, whereas infant blood T cells were dominated by immune related terms. Comparing adult and infant blood T cells, the former was enriched for inflammatory response, cytokine production and biological adhesion, while upregulated genes in infant blood T cells were associated with cell cycle, cell death and gene expression. CONCLUSION: This study provides valuable insight into the transcriptomes of the human primary SP T cells still residing within the thymus, and offers a unique comparison to primary blood derived T cells. Interestingly, the majority of autoimmune disease associated genes were expressed in one or more T cell subset, however ~ 11% of these were not expressed in frequently studied adult peripheral blood.
Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Timo/inmunología , Transcriptoma , Adulto , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular , Niño , Perfilación de la Expresión Génica/métodos , Humanos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Timo/metabolismoRESUMEN
The IPD-MHC Database represents the official repository for non-human major histocompatibility complex (MHC) sequences, overseen and supported by the Comparative MHC Nomenclature Committee, providing access to curated MHC data and associated analysis tools. IPD-MHC gathers allelic MHC class I and class II sequences from classical and non-classical MHC loci from various non-human animals including pets, farmed and experimental model animals. So far, Atlantic salmon and rainbow trout are the only teleost fish species with MHC class I and class II sequences present. For the remaining teleost or ray-finned species, data on alleles originating from given classical locus is scarce hampering their inclusion in the database. However, a fast expansion of sequenced genomes opens for identification of classical loci where high-throughput sequencing (HTS) will enable typing of allelic variants in a variety of new teleost or ray-finned species. HTS also opens for large-scale studies of salmonid MHC diversity challenging the current database nomenclature and analysis tools. Here we establish an Illumina approach to identify allelic MHC diversity in Atlantic salmon, using animals from an endangered wild population, and alter the salmonid MHC nomenclature to accommodate the expected sequence expansions.
Asunto(s)
Complejo Mayor de Histocompatibilidad/genética , Salmo salar/genética , Salmo salar/inmunología , Alelos , Animales , Bases de Datos Factuales , Evolución Molecular , Variación Genética , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ProteínaRESUMEN
The original version of this article was published without open access. With the author(s)' decision to opt for Open Choice the copyright of the article changed.
RESUMEN
High-throughput sequencing has emerged as the favoured method to study microRNA (miRNA) expression, but biases introduced during library preparation have been reported. We recently compared the performance (sensitivity, reliability, titration response and differential expression) of six commercially-available kits on synthetic miRNAs and human RNA, where library preparation was performed by the vendors. We hereby supplement this study with data from two further commonly used kits (NEBNext, NEXTflex) whose manufacturers initially declined to participate. NEXTflex demonstrated the highest sensitivity, which may reflect its use of partially-randomized adapter sequences, but overall performance was lower than the QIAseq and TailorMix kits. NEBNext showed intermediate performance. We reaffirm that biases are kit specific, complicating the comparison of miRNA datasets generated using different kits.
Asunto(s)
Biblioteca de Genes , Ingeniería Genética , MicroARNs/genética , Ingeniería Genética/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Químicos de Laboratorio/normas , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN/métodosRESUMEN
High-throughput sequencing is increasingly favoured to assay the presence and abundance of microRNAs (miRNAs) in biological samples, even from low RNA amounts, and a number of commercial vendors now offer kits that allow miRNA sequencing from sub-nanogram (ng) inputs. Although biases introduced during library preparation have been documented, the relative performance of current reagent kits has not been investigated in detail. Here, six commercial kits capable of handling <100ng total RNA input were used for library preparation, performed by kit manufactures, on synthetic miRNAs of known quantities and human total RNA samples. We compared the performance of miRNA detection sensitivity, reliability, titration response and the ability to detect differentially expressed miRNAs. In addition, we assessed the use of unique molecular identifiers (UMI) sequence tags in one kit. We observed differences in detection sensitivity and ability to identify differentially expressed miRNAs between the kits, but none were able to detect the full repertoire of synthetic miRNAs. The reliability within the replicates of all kits was good, while larger differences were observed between the kits, although none could accurately quantify the relative levels of the majority of miRNAs. UMI tags, at least within the input ranges tested, offered little advantage to improve data utility. In conclusion, biases in miRNA abundance are heavily influenced by the kit used for library preparation, suggesting that comparisons of datasets prepared by different procedures should be made with caution. This article is intended to assist researchers select the most appropriate kit for their experimental conditions.
Asunto(s)
Biblioteca de Genes , Ingeniería Genética/métodos , MicroARNs/genética , Ingeniería Genética/normas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , MicroARNs/síntesis química , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN/métodosRESUMEN
BACKGROUND: Early development of an oviparous organism is based on maternally stocked structural, nutritional and regulatory components. These components influence the future developmental potential of an embryo, which is referred to as egg quality. Until zygotic genome activation, translational activity in a fish early embryo is limited to parentally inherited transcripts only. In this study, we asked whether egg transcriptome is associated with egg quality in Atlantic salmon (Salmo salar), which is capable of storing ovulated eggs in its abdominal cavity for a long time before spawning. RESULTS: We analyzed messenger RNA (mRNA) and micro RNA (miRNA) transcriptomes throughout the post-ovulatory egg retention period in batches of eggs from two quality groups, good and poor, classified based on the future developmental performance. We identified 28,551 protein-coding genes and 125 microRNA families, with 200 mRNAs and 5 miRNAs showing differential abundance between egg quality groups and/or among postovulatory ages. Transcriptome dynamics during the egg retention period was different in the two egg quality groups. We identified only a single gene, hepcidin-1, as a potential marker for Atlantic salmon egg quality evaluation. CONCLUSION: The overlapping effect of post-ovulatory age on intrinsic egg developmental competence makes the quantification of egg quality difficult when based on transcripts abundance only.
Asunto(s)
Embrión no Mamífero/metabolismo , Perfilación de la Expresión Génica , Madres , Ovulación , Salmo salar/embriología , Salmo salar/genética , Animales , MicroARNs/genética , ARN Mensajero/genéticaRESUMEN
Listeria monocytogenes, the causative agent of the serious foodborne disease listeriosis, can rapidly adapt to a wide range of environmental stresses, including visible light. This study shows that exposure of the L. monocytogenes EGDe strain to low-intensity, broad-spectrum visible light inhibited bacterial growth and caused altered multicellular behavior during growth on semisolid agar compared to when the bacteria were grown in complete darkness. These light-dependent changes were observed regardless of the presence of the blue light receptor (Lmo0799) and the stressosome regulator sigma B (SigB), which have been suggested to be important for the ability of L. monocytogenes to respond to blue light. A genome-wide transcriptional analysis revealed that exposure of L. monocytogenes EGDe to broad-spectrum visible light caused altered expression of 2,409 genes belonging to 18 metabolic pathways compared to bacteria grown in darkness. The light-dependent differentially expressed genes are involved in functions such as glycan metabolism, cell wall synthesis, chemotaxis, flagellar synthesis, and resistance to oxidative stress. Exposure to light conferred reduced bacterial motility in semisolid agar, which correlates well with the light-dependent reduction in transcript levels of flagellar and chemotaxis genes. Similar light-induced reduction in growth and motility was also observed in two different L. monocytogenes food isolates, suggesting that these responses are typical for L. monocytogenes Together, the results show that even relatively small doses of broad-spectrum visible light cause genome-wide transcriptional changes, reduced growth, and motility in L. monocytogenesIMPORTANCE Despite major efforts to control L. monocytogenes, this pathogen remains a major problem for the food industry, where it poses a continuous risk of food contamination. The ability of L. monocytogenes to sense and adapt to different stressors in the environment enables it to persist in many different niches, including food production facilities and in food products. The present study shows that exposure of L. monocytogenes to low-intensity broad-spectrum visible light reduces its growth and motility and alters its multicellular behavior. Light exposure also caused genome-wide changes in transcript levels, affecting multiple metabolic pathways, which are likely to influence the bacterial physiology and lifestyle. In practical terms, the data presented in this study suggest that broad-spectrum visible light is an important environmental variable to consider as a strategy to improve food safety by reducing L. monocytogenes contamination in food production environments.
Asunto(s)
Genoma Bacteriano , Luz , Listeria monocytogenes/genética , Listeria monocytogenes/efectos de la radiación , Transcriptoma/efectos de la radiación , Microbiología de Alimentos , Perfilación de la Expresión Génica , Listeria monocytogenes/crecimiento & desarrollo , Listeriosis/microbiología , Redes y Vías Metabólicas/efectos de la radiaciónRESUMEN
The transcription factor c-Myb is involved in early differentiation and proliferation of haematopoietic cells, where it operates as a regulator of self-renewal and multi-lineage differentiation. Deregulated c-Myb plays critical roles in leukaemias and other human cancers. Due to its role as a master regulator, we hypothesized it might function as a pioneer transcription factor. Our approach to test this was to analyse a mutant of c-Myb, D152V, previously reported to cause haematopoietic defects in mice by an unknown mechanism. Our transcriptome data from K562 cells indicates that this mutation specifically affects c-Myb's ability to regulate genes involved in differentiation, causing failure in c-Myb's ability to block differentiation. Furthermore, we see a major effect of this mutation in assays where chromatin opening is involved. We show that each repeat in the minimal DNA-binding domain of c-Myb binds to histones and that D152V disrupts histone binding of the third repeat. ATAC-seq data indicates this mutation impairs the ability of c-Myb to cause chromatin opening at specific sites. Taken together, our findings support that c-Myb acts as a pioneer factor and show that D152V impairs this function. The D152V mutant is the first mutant of a transcription factor specifically destroying pioneer factor function.
Asunto(s)
Diferenciación Celular/genética , Genes myb , Histonas/metabolismo , Mutación , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo , Sustitución de Aminoácidos , Animales , Cromatina/genética , Cromatina/metabolismo , Eritropoyesis/genética , Técnicas de Silenciamiento del Gen , Humanos , Células K562 , Ratones , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas Proto-Oncogénicas c-myb/químicaRESUMEN
BACKGROUND: Activated T helper type 2 (Th2) cells are believed to play a pivotal role in allergic airway inflammation, but which cells attract and activate Th2 cells locally have not been fully determined. Recently, it was shown in an experimental human model of allergic rhinitis (AR) that activated monocytes rapidly accumulate in the nasal mucosa after local allergen challenge, where they promote recruitment of Th2 cells and eosinophils. OBJECTIVE: To investigate whether monocytes are recruited to the lungs in paediatric asthma. METHODS: Tissue samples obtained from children and adolescents with fatal asthma attack (n = 12), age-matched non-atopic controls (n = 9) and allergen-challenged AR patients (n = 8) were subjected to in situ immunostaining. RESULTS: Monocytes, identified as CD68+S100A8/A9+ cells, were significantly increased in the lower airway mucosa and in the alveoli of fatal asthma patients compared with control individuals. Interestingly, cellular aggregates containing CD68+S100A8/A9+ monocytes obstructing the lumen of bronchioles were found in asthmatics (8 out of 12) but not in controls. Analysing tissue specimens from challenged AR patients, we confirmed that co-staining with CD68 and S100A8/A9 was a valid method to identify recently recruited monocytes. We also showed that the vast majority of accumulating monocytes both in the lungs and in the nasal mucosa expressed matrix metalloproteinase 10, suggesting that this protein may be involved in their migration within the tissue. CONCLUSIONS AND CLINICAL RELEVANCE: Monocytes accumulated in the lungs of children and adolescents with fatal asthma attack. This finding strongly suggests that monocytes are directly involved in the immunopathology of asthma and that these pro-inflammatory cells are potential targets for therapy.
Asunto(s)
Asma/inmunología , Asma/patología , Recuento de Leucocitos , Monocitos/inmunología , Monocitos/patología , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/patología , Adolescente , Factores de Edad , Alérgenos/inmunología , Asma/mortalidad , Asma/terapia , Biomarcadores , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Niño , Preescolar , Progresión de la Enfermedad , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Inmunofenotipificación , Lactante , Masculino , Monocitos/metabolismo , Mortalidad , Pruebas de Provocación Nasal , Mucosa Respiratoria/metabolismo , Índice de Severidad de la EnfermedadRESUMEN
BACKGROUND: ChIP-seq is the primary technique used to investigate genome-wide protein-DNA interactions. As part of this procedure, immunoprecipitated DNA must undergo "library preparation" to enable subsequent high-throughput sequencing. To facilitate the analysis of biopsy samples and rare cell populations, there has been a recent proliferation of methods allowing sequencing library preparation from low-input DNA amounts. However, little information exists on the relative merits, performance, comparability and biases inherent to these procedures. Notably, recently developed single-cell ChIP procedures employing microfluidics must also employ library preparation reagents to allow downstream sequencing. RESULTS: In this study, seven methods designed for low-input DNA/ChIP-seq sample preparation (Accel-NGS® 2S, Bowman-method, HTML-PCR, SeqPlex™, DNA SMART™, TELP and ThruPLEX®) were performed on five replicates of 1 ng and 0.1 ng input H3K4me3 ChIP material, and compared to a "gold standard" reference PCR-free dataset. The performance of each method was examined for the prevalence of unmappable reads, amplification-derived duplicate reads, reproducibility, and for the sensitivity and specificity of peak calling. CONCLUSIONS: We identified consistent high performance in a subset of the tested reagents, which should aid researchers in choosing the most appropriate reagents for their studies. Furthermore, we expect this work to drive future advances by identifying and encouraging use of the most promising methods and reagents. The results may also aid judgements on how comparable are existing datasets that have been prepared with different sample library preparation reagents.
Asunto(s)
Inmunoprecipitación de Cromatina , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunoprecipitación de Cromatina/métodos , Mapeo Cromosómico , Genoma , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Reproducibilidad de los Resultados , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: Several miRNAs are known to control myogenesis in vertebrates. Some of them are specifically expressed in muscle while others have a broader tissue expression but are still involved in establishing the muscle phenotype. In teleosts, water temperature markedly affects embryonic development and larval growth. It has been previously shown that higher embryonic temperatures promoted faster development and increased size of Senegalese sole (Solea senegalensis) larvae relatively to a lower temperature. The role of miRNAs in thermal-plasticity of growth is hitherto unknown. Hence, we have used high-throughput SOLiD sequencing to determine potential changes in the miRNA transcriptome in Senegalese sole embryos that were incubated at 15°C or 21°C until hatching and then reared at a common temperature of 21°C. RESULTS: We have identified 320 conserved miRNAs in Senegalese sole, of which 48 had not been previously described in teleosts. mir-17a-5p, mir-26a, mir-130c, mir-206-3p, mir-181a-5p, mir-181a-3p and mir-199a-5p expression levels were further validated by RT- qPCR. The majority of miRNAs were dynamically expressed during early development, with peaks of expression at pre-metamorphosis or metamorphosis. Also, a higher incubation temperature (21°C) was associated with expression of some miRNAs positively related with growth (e.g., miR-17a, miR-181-5p and miR-206) during segmentation and at hatching. Target prediction revealed that these miRNAs may regulate myogenesis through MAPK and mTOR pathways. Expression of miRNAs involved in lipid metabolism and energy production (e.g., miR-122) also differed between temperatures. A miRNA that can potentially target calpain (miR-181-3p), and therefore negatively regulate myogenesis, was preferentially expressed during segmentation at 15°C compared to 21°C. CONCLUSIONS: Temperature has a strong influence on expression of miRNAs during embryonic and larval development in fish. Higher expression levels of miR-17a, miR-181-5p and miR-206-3p and down-regulation of miR-181a-3p at 21°C may promote myogenesis and are in agreement with previous studies in Senegalese sole, which reported enhanced growth at higher embryonic temperatures compared to 15°C. Moreover, miRNAs involved in lipid metabolism and energy production may also contribute to increased larval growth at 21°C compared to 15°C. Taken together, our data indicate that miRNAs may play a role in temperature-induced phenotypic plasticity of growth in teleosts.
Asunto(s)
Peces Planos/metabolismo , MicroARNs/metabolismo , Transcriptoma , Adaptación Fisiológica , Animales , Sitios de Unión , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Peces Planos/genética , Peces Planos/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , MicroARNs/genética , Fenotipo , Interferencia de ARN , Transducción de Señal , TemperaturaRESUMEN
LSH, a member of the SNF2 family of chromatin remodeling ATPases encoded by the Hells gene, is essential for normal levels of DNA methylation in the mammalian genome. While the role of LSH in the methylation of repetitive DNA sequences is well characterized, its contribution to the regulation of DNA methylation and the expression of protein-coding genes has not been studied in detail. In this report we investigate genome-wide patterns of DNA methylation at gene promoters in Hells(-/-) mouse embryonic fibroblasts (MEFs). We find that in the absence of LSH, DNA methylation is lost or significantly reduced at â¼20% of all normally methylated promoter sequences. As a consequence, a large number of genes are misexpressed in Hells(-/-) MEFs. Comparison of Hells(-/-) MEFs with wild-type MEFs and embryonic stem (ES) cells suggests that LSH is important for de novo DNA methylation events that accompany the establishment and differentiation of embryonic lineage cells. We further show that the generation of normal DNA methylation patterns and stable gene silencing at specific promoters require cooperation between LSH and the G9a/GLP complex of histone methylases. At such loci, G9a recruitment is compromised when LSH is absent or greatly reduced. Taken together, our data suggest a mechanism whereby LSH promotes binding of DNA methyltransferases and the G9a/GLP complex to specific loci and facilitates developmentally programmed DNA methylation and stable gene silencing during lineage commitment and differentiation.
Asunto(s)
ADN Helicasas/metabolismo , Metilación de ADN , Regulación del Desarrollo de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , ADN Helicasas/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Fibroblastos/metabolismo , Silenciador del Gen , N-Metiltransferasa de Histona-Lisina/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , RatonesRESUMEN
Piscine red blood cells (RBC) are nucleated and have been characterized as mediators of immune responses in addition to their role in gas exchange. Salmonid RBC are major target cells of Piscine orthoreovirus-1 (PRV-1), the etiological agent of heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar). PRV-1 replicates in RBC ex vivo, but no viral amplification has been possible in available A. salmon cell lines. To compare RBC basal transcripts and transcriptional responses to PRV-1 in the early phase of infection with non-susceptible cells, we exposed A. salmon RBC, Atlantic salmon kidney cells (ASK) and Salmon head kidney cells (SHK-1) to PRV-1 for 24 h. The RNA-seq analysis of RBC supported their previous characterization as pluripotent cells, as they expressed a wide repertoire of genes encoding pattern recognition receptors (PRRs), cytokine receptors, and genes implicated in antiviral activities. The comparison of RBC to ASK and SHK-1 revealed immune cell features exclusively expressed in RBC, such as genes involved in chemotactic activity in response to inflammation. Differential expression analysis of RBC exposed to PRV-1 showed 46 significantly induced genes (≥ 2-fold upregulation) linked to the antiviral response pathway, including RNA-specific PRRs and interferon (IFN) response factors. In SHK-1, PRV induced a more potent or faster antiviral response (213 genes induced). ASK cells showed a differential response pattern (12 genes induced, 18 suppressed) less characterized by the dsRNA-induced antiviral pathway. Despite these differences, the RIG-I-like receptor 3 (RLR3) in the family of cytosolic dsRNA receptors was significantly induced in all PRV-1 exposed cells. IFN regulatory factor 1 (IRF1) was significantly induced in RBC only, in contrast to IRF3/IRF7 induced in SHK-1. Differences in IRF expression and activity may potentially affect viral propagation.
Asunto(s)
Orthoreovirus , Infecciones por Reoviridae , Salmo salar , Animales , Salmo salar/genética , Infecciones por Reoviridae/metabolismo , Inflamación/metabolismo , Eritrocitos/metabolismo , Perfilación de la Expresión Génica , Antivirales/metabolismoRESUMEN
Enterohemorrhagic E. coli (EHEC) is considered to be the most dangerous pathotype of E. coli, as it causes severe conditions such as hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). Antibiotic treatment of EHEC infections is generally not recommended since it may promote the production of the Shiga toxin (Stx) and lead to worsened symptoms. This study explores how exposure to the fluoroquinolone ciprofloxacin reorganizes the transcriptome and proteome of EHEC O157:H7 strain EDL933, with special emphasis on virulence-associated factors. As expected, exposure to ciprofloxacin caused an extensive upregulation of SOS-response- and Stx-phage proteins, including Stx. A range of other virulence-associated factors were also upregulated, including many genes encoded by the LEE-pathogenicity island, the enterohemolysin gene (ehxA), as well as several genes and proteins involved in LPS production. However, a large proportion of the genes and proteins (17 and 8%, respectively) whose expression was upregulated upon ciprofloxacin exposure (17 and 8%, respectively) are not functionally assigned. This indicates a knowledge gap in our understanding of mechanisms involved in EHECs response to antibiotic-induced stress. Altogether, the results contribute to better understanding of how exposure to ciprofloxacin influences the virulome of EHEC and generates a knowledge base for further studies on how EHEC responds to antibiotic-induced stress. A deeper understanding on how EHEC responds to antibiotics will facilitate development of novel and safer treatments for EHEC infections.
Asunto(s)
Ciprofloxacina , Proteómica , Transcriptoma , Ciprofloxacina/farmacología , Proteómica/métodos , Virulencia/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Escherichia coli Enterohemorrágica/efectos de los fármacos , Escherichia coli Enterohemorrágica/patogenicidad , Escherichia coli Enterohemorrágica/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Antibacterianos/farmacología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Proteoma/metabolismo , Perfilación de la Expresión Génica , HumanosRESUMEN
PURPOSE: Silent corticotroph adenoma (SCA) exhibits more tumor aggressiveness features than functioning adenomas (FCA). We aimed to investigate PCSK1N expression in CA and examine if ER stress-induced responses affect cell survival in a corticotroph tumor cell model. METHODS: Clinical and imaging characteristics were recorded in 33 patients with FCA (20 women, 11 macroadenomas) and 18 SCA (8 women, all macroadenomas). Gene expression of proopiomelanocortin (POMC), T-box transcription factor 19(TBX19)/TPIT, proprotein convertase subtilisin/kexin type 1(PCSK1)/PC1/3, and its inhibitor PCSK1N, was measured by RT-qPCR in adenoma tissue.Mouse pituitary corticotroph tumor (AtT-20) cells were treated with tanespimycin (17-AAG), a HSP90 chaperone inhibitor, to induce ER stress, followed by gene and protein analyses. RESULTS: POMC, TPIT, and PCSK1 expression were higher, whereas PCSK1N was lower in FCA compared to SCA. PCSK1N correlated with POMC (rs= -0.514, p <0.001), TPIT (rs= -0.386, p = 0.005), PCSK1 (rs= -0.3691, p = 0.008), and tumor largest diameter (rs= 0.645, p <0.001), in all CA. Induction of ER stress by 17-AAG in AtT-20 cells led to a decrease of POMC and an increase of PCSK1N gene expression at 24h. Moreover, a downregulation of cell cycle, apoptosis, and senescence pathways, and alterations in cell adhesion and cytoskeleton were observed at the protein level. CONCLUSIONS: PCSK1N is higher in SCA compared with FCA, and associated with corticotroph cell markers and tumor size. PCSK1N is likely to be part of the adaptive response to ER stress, potentially conferring a survival advantage to the corticotroph tumor cell in conjunction with other proteins.
RESUMEN
Fish gills are not only the respiratory organ, but also essential for ion-regulation, acid-base control, detoxification, waste excretion and host defense. Multifactorial gill diseases are common in farmed Atlantic salmon, and still poorly understood. Understanding gill pathophysiology is of paramount importance, but the sacrifice of large numbers of experimental animals for this purpose should be avoided. Therefore, in vitro models, such as cell lines, are urgently required to replace fish trials. An Atlantic salmon gill epithelial cell line, ASG-10, was established at the Norwegian Veterinary institute in 2018. This cell line forms a monolayer expressing cytokeratin, e-cadherin and desmosomes, hallmarks of a functional epithelial barrier. To determine the value of ASG-10 for comparative studies of gill functions, the characterization of ASG-10 was taken one step further by performing functional assays and comparing the cell proteome and transcriptome with those of gills from juvenile freshwater Atlantic salmon. The ASG-10 cell line appear to be a homogenous cell line consisting of epithelial cells, which express tight junction proteins. We demonstrated that ASG-10 forms a barrier, both alone and in co-culture with the Atlantic salmon gill fibroblast cell line ASG-13. ASG-10 cells can phagocytose and express several ATP-binding cassette transport proteins. Additionally, ASG-10 expresses genes involved in biotransformation of xenobiotics and immune responses. Taken together, this study provides an overview of functions that can be studied using ASG-10, which will be an important contribution to in vitro gill epithelial research of Atlantic salmon.
RESUMEN
CONTEXT: Active acromegaly is characterized by lipolysis-induced insulin resistance, which suggests adipose tissue (AT) as a primary driver of metabolic aberrations. OBJECTIVE: To study the gene expression landscape in AT in patients with acromegaly before and after disease control in order to understand the changes and to identify disease-specific biomarkers. METHODS: RNA sequencing was performed on paired subcutaneous adipose tissue (SAT) biopsies from six patients with acromegaly at time of diagnosis and after curative surgery. Clustering and pathway analyses were performed in order to identify disease activity-dependent genes. In a larger patient cohort (n = 23), the corresponding proteins were measured in serum by immunoassay. Correlations between growth hormone (GH), insulin-like growth factor I (IGF-I), visceral AT (VAT), SAT, total AT, and serum proteins were analyzed. RESULTS: 743 genes were significantly differentially expressed (P-adjusted < .05) in SAT before and after disease control. The patients clustered according to disease activity. Pathways related to inflammation, cell adhesion and extracellular matrix, GH and insulin signaling, and fatty acid oxidation were differentially expressed.Serum levels of HTRA1, METRNL, S100A8/A9, and PDGFD significantly increased after disease control (P < .05). VAT correlated with HTRA1 (R = 0.73) and S100A8/A9 (R = 0.55) (P < .05 for both). CONCLUSION: AT in active acromegaly is associated with a gene expression profile of fibrosis and inflammation, which may corroborate the hyper-metabolic state and provide a means for identifying novel biomarkers.