Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
PLoS Pathog ; 17(7): e1009706, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34252168

RESUMEN

Many viruses utilize the host endo-lysosomal network for infection. Tracing the endocytic itinerary of SARS-CoV-2 can provide insights into viral trafficking and aid in designing new therapeutic strategies. Here, we demonstrate that the receptor binding domain (RBD) of SARS-CoV-2 spike protein is internalized via the pH-dependent CLIC/GEEC (CG) endocytic pathway in human gastric-adenocarcinoma (AGS) cells expressing undetectable levels of ACE2. Ectopic expression of ACE2 (AGS-ACE2) results in RBD traffic via both CG and clathrin-mediated endocytosis. Endosomal acidification inhibitors like BafilomycinA1 and NH4Cl, which inhibit the CG pathway, reduce the uptake of RBD and impede Spike-pseudoviral infection in both AGS and AGS-ACE2 cells. The inhibition by BafilomycinA1 was found to be distinct from Chloroquine which neither affects RBD uptake nor alters endosomal pH, yet attenuates Spike-pseudovirus entry. By screening a subset of FDA-approved inhibitors for functionality similar to BafilomycinA1, we identified Niclosamide as a SARS-CoV-2 entry inhibitor. Further validation using a clinical isolate of SARS-CoV-2 in AGS-ACE2 and Vero cells confirmed its antiviral effect. We propose that Niclosamide, and other drugs which neutralize endosomal pH as well as inhibit the endocytic uptake, could provide broader applicability in subverting infection of viruses entering host cells via a pH-dependent endocytic pathway.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/virología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad , Internalización del Virus/efectos de los fármacos , Cloruro de Amonio/farmacología , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/fisiología , Animales , Antivirales/administración & dosificación , Antivirales/farmacología , Línea Celular , Chlorocebus aethiops , Cloroquina/farmacología , Clatrina/metabolismo , Sinergismo Farmacológico , Endocitosis/efectos de los fármacos , Endocitosis/fisiología , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Humanos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Hidroxicloroquina/administración & dosificación , Macrólidos/farmacología , Niclosamida/administración & dosificación , Niclosamida/farmacología , Unión Proteica/efectos de los fármacos , Dominios Proteicos , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/fisiología , Células Vero
2.
Traffic ; 21(8): 522-533, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32506678

RESUMEN

Phagocytosis is a complex cellular uptake process involving multiple distinct steps of cargo recognition, uptake, phagosome maturation and eventual phagolysosome resolution. Emerging literature shows that heterogeneity of phagocytosis at multiple steps at a single cell level influences the population outcome. However, the determinants of phagocytic heterogeneity are not clear. Here we show that the variance in the endocytic capacity of individual cells in a macrophage population determines subsequent phagocytic uptake and trafficking. Our results document the extensive heterogeneity in the endocytic uptake of individual macrophages, and show that cells with higher endocytic capacity preferentially phagocytose diverse cargo, including pathogenic Mycobacterium tuberculosis. Interestingly, M. tuberculosis infected cells sustain the higher endocytic capacity following infection. Modulating endocytic capacity by inhibiting endocytosis reduces phagocytic uptake. Differential uptake of M. tuberculosis into cells with different endocytic capacities correlates with the efficiency of phagocytic delivery to lysosomes, thus contributing further to phagocytic as well as mycobacterial heterogeneity. Thus, variance in endocytic capacity is a determinant of generating heterogeneity in phagocytosis at multiple steps.


Asunto(s)
Macrófagos , Mycobacterium tuberculosis , Fagocitosis , Fagosomas , Lisosomas
3.
Cell Microbiol ; 23(7): e13337, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33813790

RESUMEN

Intracellular pathogens interact with host systems in intimate ways to sustain a pathogenic lifestyle. Consequently, these interactions can potentially be targets of host-directed interventions against infectious diseases. In case of tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis (Mtb), while effective anti-tubercular compounds are available, the long treatment duration and emerging drug resistance necessitate identification of new class of molecules with anti-TB activity, as well as new treatment strategies. A significant part of the effort in finding new anti-TB drugs is focused on bacterial targets in bacterial systems. However, the host environment plays a major role in pathogenesis mechanisms and must be considered actively in these efforts. On the one hand, the bacterial origin targets must be relevant and accessible in the host, while on the other hand, new host origin targets required for the bacterial survival can be targeted. Such targets are good candidates for host-directed therapeutics, a strategy gaining traction as an adjunct in TB treatment. In this review, we will summarise the screening platforms used to identify compounds with anti-tubercular activities inside different host environments and outline recent technical advances in these platforms. Finally, while the examples given are specific to mycobacteria, the methods and principles outlined are broadly applicable to most intracellular infections.


Asunto(s)
Antituberculosos , Evaluación Preclínica de Medicamentos/métodos , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Humanos
4.
J Biol Chem ; 295(27): 9192-9210, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32424041

RESUMEN

Intracellular pathogens commonly manipulate the host lysosomal system for their survival. However, whether this pathogen-induced alteration affects the organization and functioning of the lysosomal system itself is not known. Here, using in vitro and in vivo infections and quantitative image analysis, we show that the lysosomal content and activity are globally elevated in Mycobacterium tuberculosis (Mtb)-infected macrophages. We observed that this enhanced lysosomal state is sustained over time and defines an adaptive homeostasis in the infected macrophage. Lysosomal alterations are caused by mycobacterial surface components, notably the cell wall-associated lipid sulfolipid-1 (SL-1), which functions through the mTOR complex 1 (mTORC1)-transcription factor EB (TFEB) axis in the host cells. An Mtb mutant lacking SL-1, MtbΔpks2, shows attenuated lysosomal rewiring compared with the WT Mtb in both in vitro and in vivo infections. Exposing macrophages to purified SL-1 enhanced the trafficking of phagocytic cargo to lysosomes. Correspondingly, MtbΔpks2 exhibited a further reduction in lysosomal delivery compared with the WT. Reduced trafficking of this mutant Mtb strain to lysosomes correlated with enhanced intracellular bacterial survival. Our results reveal that global alteration of the host lysosomal system is a defining feature of Mtb-infected macrophages and suggest that this altered lysosomal state protects host cell integrity and contributes to the containment of the pathogen.


Asunto(s)
Metabolismo de los Lípidos/fisiología , Lisosomas/metabolismo , Mycobacterium tuberculosis/metabolismo , Movimiento Celular , Pared Celular , Interacciones Huésped-Patógeno/fisiología , Humanos , Lípidos/fisiología , Lisosomas/fisiología , Macrófagos/metabolismo , Macrófagos/microbiología , Mycobacterium tuberculosis/fisiología , Transporte de Proteínas , Células THP-1 , Tuberculosis/microbiología
5.
Malar J ; 19(1): 214, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32571333

RESUMEN

BACKGROUND: Vivax malaria is associated with significant morbidity and economic loss, and constitutes the bulk of malaria cases in large parts of Asia and South America as well as recent case reports in Africa. The widespread prevalence of vivax is a challenge to global malaria elimination programmes. Vivax malaria control is particularly challenged by existence of dormant liver stage forms that are difficult to treat and are responsible for multiple relapses, growing drug resistance to the asexual blood stages and host-genetic factors that preclude use of specific drugs like primaquine capable of targeting Plasmodium vivax liver stages. Despite an obligatory liver-stage in the Plasmodium life cycle, both the difficulty in obtaining P. vivax sporozoites and the limited availability of robust host cell models permissive to P. vivax infection are responsible for the limited knowledge of hypnozoite formation biology and relapse mechanisms, as well as the limited capability to do drug screening. Although India accounts for about half of vivax malaria cases world-wide, very little is known about the vivax liver stage forms in the context of Indian clinical isolates. METHODS: To address this, methods were established to obtain infective P. vivax sporozoites from an endemic region in India and multiple assay platforms set up to detect and characterize vivax liver stage forms. Different hepatoma cell lines, including the widely used HCO4 cells, primary human hepatocytes as well as hepatocytes obtained from iPSC's generated from vivax patients and healthy donors were tested for infectivity with P. vivax sporozoites. RESULTS: Both large and small forms of vivax liver stage are detected in these assays, although the infectivity obtained in these platforms are low. CONCLUSIONS: This study provides a proof of concept for detecting liver stage P. vivax and provide the first characterization of P. vivax liver stage forms from an endemic region in India.


Asunto(s)
Estadios del Ciclo de Vida , Hígado/parasitología , Malaria Vivax/parasitología , Plasmodium vivax/crecimiento & desarrollo , India , Plasmodium vivax/aislamiento & purificación
6.
Malar J ; 17(1): 385, 2018 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-30359252

RESUMEN

BACKGROUND: The native gut microbiota of Anopheles mosquitoes is known to play a key role in the physiological function of its host. Interestingly, this microbiota can also influence the development of Plasmodium in its host mosquitoes. In recent years, much interest has been shown in the employment of gut symbionts derived from vectors in the control of vector-borne disease transmission. In this study, the midgut microbial diversity has been characterized among laboratory-reared adult Anopheles stephensi mosquitoes, from the colony created by rearing progeny of wild-caught mosquitoes (obtained from three different locations in southern India) for multiple generations, using 16S ribosomal RNA (rRNA) gene sequencing approach. Further, the influence of native midgut microbiota of mosquitoes on the development of rodent malaria parasite Plasmodium berghei in its host has been studied. METHODS: The microbial diversity associated with the midgut of An. stephensi mosquitoes was studied by sequencing V3 region of 16S ribosomal RNA (rRNA) gene. The influence of native midgut microbiota of An. stephensi mosquitoes on the susceptibility of the mosquitoes to rodent malaria parasite P. berghei was studied by comparing the intensity and prevalence of P. berghei infection among the antibiotic treated and untreated cohorts of mosquitoes. RESULTS: The analysis of bacterial diversity from the midguts of An. stephensi showed Proteobacteria as the most dominant population among the three laboratory-reared strains of An. stephensi studied. Major genera identified among these mosquito strains were Acinetobacter, Pseudomonas, Prevotella, Corynebacterium, Veillonella, and Bacillus. The mosquito infectivity studies carried out to determine the implication of total midgut microbiota on P. berghei infection showed that mosquitoes whose native microbiota cleared with antibiotics had increased susceptibility to P. berghei infection compared to the antibiotic untreated mosquitoes with its natural native microbiota. CONCLUSIONS: The use of microbial symbiont to reduce the competence of vectors involved in disease transmission has gained much importance in recent years as an emerging alternative approach towards disease control. In this context, the present study was aimed to identify the midgut microbiota composition of An. stephensi, and its effect on the development of P. berghei. Interestingly, the analysis of midgut microbiota from An. stephensi revealed the presence of genus Veillonella in Anopheles species for the first time. Importantly, the study also revealed the negative influence of total midgut microbiota on the development of P. berghei in three laboratory strains of An. stephensi, emphasizing the importance of understanding the gut microbiota in malaria vectors, and its relationship with parasite development in designing strategies to control malaria transmission.


Asunto(s)
Anopheles/microbiología , Anopheles/parasitología , Fenómenos Fisiológicos Bacterianos , Microbioma Gastrointestinal , Plasmodium berghei/fisiología , Animales , Animales de Laboratorio/microbiología , Animales de Laboratorio/parasitología , Bacterias/genética , Bacterias/crecimiento & desarrollo , Enfermedades Endémicas , Geografía , India , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , Análisis de Secuencia de ARN
7.
Lancet Reg Health Southeast Asia ; 22: 100361, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38482152

RESUMEN

Background: There are limited global data on head-to-head comparisons of vaccine platforms assessing both humoral and cellular immune responses, stratified by pre-vaccination serostatus. The COVID-19 vaccination drive for the Indian population in the age group 18-45 years began in April 2021 when seropositivity rates in the general population were rising due to the delta wave of COVID-19 pandemic during April-May 2021. Methods: Between June 30, 2021, and Jan 28, 2022, we enrolled 691 participants in the age group 18-45 years across four clinical sites in India. In this non-randomised and laboratory blinded study, participants received either two doses of Covaxin® (4 weeks apart) or two doses of Covishield™ (12 weeks apart) as per the national vaccination policy. The primary outcome was the seroconversion rate and the geometric mean titre (GMT) of antibodies against the SARS-CoV-2 spike and nucleocapsid proteins post two doses. The secondary outcome was the frequency of cellular immune responses pre- and post-vaccination. Findings: When compared to pre-vaccination baseline, both vaccines elicited statistically significant seroconversion and binding antibody levels in both seronegative and seropositive individuals. In the per-protocol cohort, Covishield™ elicited higher antibody responses than Covaxin® as measured by seroconversion rate (98.3% vs 74.4%, p < 0.0001 in seronegative individuals; 91.7% vs 66.9%, p < 0.0001 in seropositive individuals) as well as by anti-spike antibody levels against the ancestral strain (GMT 1272.1 vs 75.4 binding antibody units/ml [BAU/ml], p < 0.0001 in seronegative individuals; 2089.07 vs 585.7 BAU/ml, p < 0.0001 in seropositive individuals). As participants at all clinical sites were not recruited at the same time, site-specific immunogenicity was impacted by the timing of vaccination relative to the delta and omicron waves. Surrogate neutralising antibody responses against variants-of-concern including delta and omicron was higher in Covishield™ recipients than in Covaxin® recipients; and in seropositive than in seronegative individuals after both vaccination and asymptomatic infection (omicron variant). T cell responses are reported from only one of the four site cohorts where the vaccination schedule preceded the omicron wave. In seronegative individuals, Covishield™ elicited both CD4+ and CD8+ spike-specific cytokine-producing T cells whereas Covaxin® elicited mainly CD4+ spike-specific T cells. Neither vaccine showed significant post-vaccination expansion of spike-specific T cells in seropositive individuals. Interpretation: Covishield™ elicited immune responses of higher magnitude and breadth than Covaxin® in both seronegative individuals and seropositive individuals, across cohorts representing the pre-vaccination immune history of most of the vaccinated Indian population. Funding: Corporate social responsibility (CSR) funding from Hindustan Unilever Limited (HUL) and Unilever India Pvt. Ltd. (UIPL).

8.
Front Immunol ; 14: 1255478, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022563

RESUMEN

The continual emergence of SARS-CoV-2 variants threatens to compromise the effectiveness of worldwide vaccination programs, and highlights the need for complementary strategies for a sustainable containment plan. An effective approach is to mobilize the body's own antimicrobial peptides (AMPs), to combat SARS-CoV-2 infection and propagation. We have found that human cathelicidin (LL37), an AMP found at epithelial barriers as well as in various bodily fluids, has the capacity to neutralise multiple strains of SARS-CoV-2. Biophysical and computational studies indicate that LL37's mechanism of action is through the disruption of the viral membrane. This antiviral activity of LL37 is enhanced by the hydrotropic action of niacinamide, which may increase the bioavailability of the AMP. Interestingly, we observed an inverse correlation between LL37 levels and disease severity of COVID-19 positive patients, suggesting enhancement of AMP response as a potential therapeutic avenue to mitigate disease severity. The combination of niacinamide and LL37 is a potent antiviral formulation that targets viral membranes of various variants and can be an effective strategy to overcome vaccine escape.


Asunto(s)
COVID-19 , Catelicidinas , Humanos , Catelicidinas/farmacología , SARS-CoV-2 , Péptidos Catiónicos Antimicrobianos/farmacología , Niacinamida , Antivirales
9.
Cell Rep ; 39(9): 110886, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35649358

RESUMEN

Intracellular pathogens manipulate host cells to survive and thrive. Cellular sensing and signaling pathways are among the key host machineries deregulated to favor infection. In this study, we show that liver-stage Plasmodium parasites compete with the host to sequester a host endosomal-adaptor protein (APPL1) known to regulate signaling in response to endocytosis. The enrichment of APPL1 at the parasitophorous vacuole membrane (PVM) involves an atypical Plasmodium Rab5 isoform (Rab5b). Depletion of host APPL1 alters neither the infection nor parasite development; however, upon overexpression of a GTPase-deficient host Rab5 mutant (hRab5_Q79L), the parasites are smaller and their PVM is stripped of APPL1. Infection with the GTPase-deficient Plasmodium berghei Rab5b mutant (PbRab5b_Q91L) in this case rescues the PVM APPL1 signal and parasite size. In summary, we observe a robust correlation between the level of APPL1 retention at the PVM and parasite size during exoerythrocytic development.


Asunto(s)
Parásitos , Plasmodium berghei , Animales , Endocitosis , GTP Fosfohidrolasas/metabolismo , Hígado/metabolismo
10.
Front Cell Infect Microbiol ; 10: 595502, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330138

RESUMEN

Lysosomes are an integral part of the intracellular defense system against microbes. Lysosomal homeostasis in the host is adaptable and responds to conditions such as infection or nutritional deprivation. Pathogens such as Mycobacterium tuberculosis (Mtb) and Salmonella avoid lysosomal targeting by actively manipulating the host vesicular trafficking and reside in a vacuole altered from the default lysosomal trafficking. In this review, the mechanisms by which the respective pathogen containing vacuoles (PCVs) intersect with lysosomal trafficking pathways and maintain their distinctness are discussed. Despite such active inhibition of lysosomal targeting, emerging literature shows that different pathogens or pathogen derived products exhibit a global influence on the host lysosomal system. Pathogen mediated lysosomal enrichment promotes the trafficking of a sub-set of pathogens to lysosomes, indicating heterogeneity in the host-pathogen encounter. This review integrates recent advancements on the global lysosomal alterations upon infections and the host protective role of the lysosomes against these pathogens. The review also briefly discusses the heterogeneity in the lysosomal targeting of these pathogens and the possible mechanisms and consequences.


Asunto(s)
Interacciones Huésped-Patógeno , Mycobacterium tuberculosis , Lisosomas , Vacuolas
11.
ACS Sens ; 5(12): 3892-3901, 2020 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-33205646

RESUMEN

Alcohol exposure has been postulated to adversely affect the physiology and function of the red blood cells (RBCs). The global pervasiveness of alcohol abuse, causing health issues and social problems, makes it imperative to resolve the physiological effects of alcohol on RBC physiology. Alcohol consumed recreationally or otherwise almost immediately alters cell physiology in ways that is subtle and still unresolved. In this paper, we introduce a high-resolution device for quantitative electrofluidic measurement of changes in RBC volume upon alcohol exposure. We present an exhaustive calibration of our device using model cells to measure and resolve volume changes down to 0.6 fL. We find an RBC shrinkage of 5.3% at 0.125% ethanol (the legal limit in the United States) and a shrinkage of 18.5% at 0.5% ethanol (the lethal limit) exposure. Further, we also measure the time dependence of cell volume shrinkage (upon alcohol exposure) and then recovery (upon alcohol removal) to quantify shrinkage and recovery of RBC volumes. This work presents the first direct quantification of temporal and concentration-dependent changes in red blood cell volume upon ethanol exposure. Our device presents a universally applicable high-resolution and high-throughput platform to measure changes in cell physiology under native and diseased conditions.


Asunto(s)
Alcoholismo , Tamaño de la Célula , Eritrocitos , Etanol , Humanos
12.
Commun Biol ; 3(1): 688, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33214643

RESUMEN

The malaria parasite Plasmodium obligatorily infects and replicates inside hepatocytes surrounded by a parasitophorous vacuole membrane (PVM), which is decorated by the host-cell derived autophagy protein LC3. We have previously shown that the parasite-derived, PVM-resident protein UIS3 sequesters LC3 to avoid parasite elimination by autophagy from hepatocytes. Here we show that a small molecule capable of disrupting this interaction triggers parasite elimination in a host cell autophagy-dependent manner. Molecular docking analysis of more than 20 million compounds combined with a phenotypic screen identified one molecule, C4 (4-{[4-(4-{5-[3-(trifluoromethyl) phenyl]-1,2,4-oxadiazol-3-yl}benzyl)piperazino]carbonyl}benzonitrile), capable of impairing infection. Using biophysical assays, we established that this impairment is due to the ability of C4 to disrupt UIS3-LC3 interaction, thus inhibiting the parasite's ability to evade the host autophagy response. C4 impacts infection in autophagy-sufficient cells without harming the normal autophagy pathway of the host cell. This study, by revealing the disruption of a critical host-parasite interaction without affecting the host's normal function, uncovers an efficient anti-malarial strategy to prevent this deadly disease.


Asunto(s)
Antimaláricos/farmacología , Proteínas de la Membrana/metabolismo , Plasmodium berghei/fisiología , Plasmodium falciparum/fisiología , Proteínas Protozoarias/metabolismo , Animales , Antimaláricos/uso terapéutico , Autofagia , Adhesión Celular , Bases de Datos de Compuestos Químicos , Humanos , Malaria/tratamiento farmacológico , Malaria/parasitología , Masculino , Proteínas de la Membrana/química , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Conformación Proteica , Proteínas Protozoarias/química
13.
Artículo en Inglés | MEDLINE | ID: mdl-32010639

RESUMEN

Plasmodium parasites undergo a dramatic transformation during the liver stage of their life cycle, amplifying over 10,000-fold inside infected hepatocytes within a few days. Such a rapid growth requires large-scale interactions with, and manipulations of, host cell functions. Whereas hepatocyte polarity is well-known to be critical for liver function, little is presently known about its involvement during the liver stage of Plasmodium development. Apical domains of hepatocytes are critical components of their polarity machinery and constitute the bile canalicular network, which is central to liver function. Here, we employed high resolution 3-D imaging and advanced image analysis of Plasmodium-infected liver tissues to show that the parasite associates preferentially with the apical domain of hepatocytes and induces alterations in the organization of these regions, resulting in localized changes in the bile canalicular architecture in the liver tissue. Pharmacological perturbation of the bile canalicular network by modulation of AMPK activity reduces the parasite's association with bile canaliculi and arrests the parasite development. Our findings using Plasmodium-infected liver tissues reveal a host-Plasmodium interaction at the level of liver tissue organization. We demonstrate for the first time a role for bile canaliculi, a central component of the hepatocyte polarity machinery, during the liver stage of Plasmodium development.


Asunto(s)
Hepatocitos/parasitología , Interacciones Huésped-Patógeno/fisiología , Hígado/parasitología , Malaria/parasitología , Plasmodium berghei/fisiología , Animales , Ácidos y Sales Biliares/análisis , Canalículos Biliares/diagnóstico por imagen , Canalículos Biliares/parasitología , Canalículos Biliares/patología , Modelos Animales de Enfermedad , Imagenología Tridimensional , Estadios del Ciclo de Vida , Hígado/diagnóstico por imagen , Hígado/patología , Malaria/diagnóstico por imagen , Malaria/patología , Ratones , Ratones Endogámicos C57BL
14.
Front Cell Dev Biol ; 6: 118, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271774

RESUMEN

For intracellular pathogens, host cells provide a replicative niche, but are also armed with innate defense mechanisms to combat the intruder. Co-evolution of host and pathogens has produced a complex interplay of host-pathogen interactions during infection, with autophagy emerging as a key player in the recent years. Host autophagy as a degradative process is a significant hindrance to intracellular growth of the pathogens, but also can be subverted by the pathogens to provide support such as nutrients. While the role of host cell autophagy in the pathogenesis mechanisms of several bacterial and viral pathogens have been extensively studied, less is known for eukaryotic pathogens. In this review, we focus on the interplay of host autophagy with the eukaryotic pathogens Plasmodium spp, Toxoplasma, Leishmania spp and the fungal pathogens Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans. The differences between these eukaryotic pathogens in terms of the host cell types they infect, infective strategies and the host responses required to defend against them provide an interesting insight into how they respond to and interact with host cell autophagy. Due to the ability to infect multiple host species and cell types during the course of their usually complex lifestyles, autophagy plays divergent roles even for the same pathogen. The scenario is further compounded since many of the eukaryotic pathogens have their own sets of either complete or partial autophagy machinery. Eukaryotic pathogen-autophagy interplay is thus a complex relationship with many novel insights for the basic understanding of autophagy, and potential for clinical relevance.

15.
Microbes Infect ; 9(14-15): 1671-9, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18023233

RESUMEN

Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, is one of the most deadly infectious diseases across the globe. The success of M. tuberculosis is related to its capacity to survive and replicate in macrophages, cells of the host innate immune system that are designed to detect and eliminate pathogens [1,2]. In this review, we will focus on the mechanisms used by the innate system of the host to detect and eliminate mycobacteria and the strategies used by M. tuberculosis to overcome host responses to establish a successful infection.


Asunto(s)
Interacciones Huésped-Patógeno , Macrófagos/microbiología , Mycobacterium tuberculosis/patogenicidad , Animales , Humanos , Inmunidad Innata , Ratones , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/fisiología , Tuberculosis/microbiología
16.
Microbes Infect ; 19(11): 515-526, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28689009

RESUMEN

Mycobacterium tuberculosis is one of the most successful pathogens known, having infected more than a third of the global population. An important strategy for intracellular survival of pathogenic mycobacteria relies on their capacity to resist delivery to lysosomes, instead surviving within macrophage phagosomes. Several factors of both mycobacterial and host origin have been implicated in this process. However, whether or not this strategy is employed in vivo is not clear. Here we show that in vivo, following intravenous infection, M. tuberculosis and Mycobacterium bovis BCG initially survived by resisting lysosomal transfer. However, after prolonged infection the bacteria were transferred to lysosomes yet continued to proliferate. A M. bovis BCG mutant lacking protein kinase G (PknG), that cannot avoid lysosomal transfer and is readily cleared in vitro, was found to survive and proliferate in vivo. The ability to survive and proliferate in lysosomal organelles in vivo was found to be due to an altered host environment rather than changes in the inherent ability of the bacteria to arrest phagosome maturation. Thus, within an infected host, both M. tuberculosis and M. bovis BCG adapts to infection-specific host responses. These results are important to understand the pathology of tuberculosis and may have implications for the development of effective strategies to combat tuberculosis.


Asunto(s)
Lisosomas/microbiología , Mycobacterium bovis/metabolismo , Mycobacterium tuberculosis/metabolismo , Animales , Bovinos , Interacciones Huésped-Patógeno , Ratones , Ratones Endogámicos DBA , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Fagosomas/microbiología , Tuberculosis/microbiología , Tuberculosis Bovina/metabolismo
17.
Nat Protoc ; 9(2): 474-90, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24481274

RESUMEN

Cell-based high-content screens are increasingly used to discover bioactive small molecules. However, identifying the mechanism of action of the selected compounds is a major bottleneck. Here we describe a protocol consisting of experimental and computational steps to identify the cellular pathways modulated by chemicals, and their mechanism of action. The multiparametric profiles from a 'query' chemical screen are used as constraints to select genes with similar profiles from a 'reference' genetic screen. In our case, the query screen is the intracellular survival of mycobacteria and the reference is a genome-wide RNAi screen of endocytosis. The two disparate screens are bridged by an 'intermediate' chemical screen of endocytosis, so that the similarity in the multiparametric profiles between the chemical and the genetic perturbations can generate a testable hypothesis of the cellular pathways modulated by the chemicals. This approach is not assay specific, but it can be broadly applied to various quantitative, multiparametric data sets. Generation of the query system takes 3-6 weeks, and data analysis and integration with the reference data set takes an 3 additional weeks.


Asunto(s)
Pruebas Genéticas/métodos , Bibliotecas de Moléculas Pequeñas/química , Biología Computacional/métodos , Endocitosis/genética , Células HeLa , Humanos , Mycobacteriaceae/genética , Interferencia de ARN
18.
Cell Host Microbe ; 13(2): 129-42, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23414754

RESUMEN

Pharmacological modulators of host-microbial interactions can in principle be identified using high-content screens. However, a severe limitation of this approach is the lack of insights into the mode of action of compounds selected during the primary screen. To overcome this problem, we developed a combined experimental and computational approach. We designed a quantitative multiparametric image-based assay to measure intracellular mycobacteria in primary human macrophages, screened a chemical library containing FDA-approved drugs, and validated three compounds for intracellular killing of M. tuberculosis. By integrating the multiparametric profiles of the chemicals with those of siRNAs from a genome-wide survey on endocytosis, we predicted and experimentally verified that two compounds modulate autophagy, whereas the third accelerates endosomal progression. Our findings demonstrate the value of integrating small molecules and genetic screens for identifying cellular mechanisms modulated by chemicals. Furthermore, selective pharmacological modulation of host trafficking pathways can be applied to intracellular pathogens beyond mycobacteria.


Asunto(s)
Antibacterianos/farmacología , Autofagia/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Interferencia de ARN , Antibacterianos/química , Transporte Biológico , Recuento de Colonia Microbiana , Biología Computacional/métodos , Endocitosis , Endosomas , Proteínas Fluorescentes Verdes/metabolismo , Haloperidol/química , Haloperidol/farmacología , Células HeLa , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Macrófagos/ultraestructura , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Mycobacterium tuberculosis/patogenicidad , Nortriptilina/química , Nortriptilina/farmacología , Fagosomas , Proclorperazina/química , Proclorperazina/farmacología
19.
Cell ; 130(1): 37-50, 2007 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-17632055

RESUMEN

Pathogenic mycobacteria survive within macrophages by avoiding lysosomal delivery, instead residing in mycobacterial phagosomes. Upon infection, the leukocyte-specific protein coronin 1 is actively recruited to mycobacterial phagosomes, where it blocks lysosomal delivery by an unknown mechanism. Analysis of macrophages from coronin 1-deficient mice showed that coronin 1 is dispensable for F-actin-dependent processes such as phagocytosis, motility, and membrane ruffling. However, upon mycobacterial infection, coronin 1 was required for activation of the Ca(2+)-dependent phosphatase calcineurin, thereby blocking lysosomal delivery of mycobacteria. In the absence of coronin 1, calcineurin activity did not occur, resulting in lysosomal delivery and killing of mycobacteria. Furthermore, blocking calcineurin activation with cyclosporin A or FK506 led to lysosomal delivery and intracellular mycobacterial killing. These results demonstrate a role for coronin 1 in activating Ca(2+) dependent signaling processes in macrophages and reveal a function for calcineurin in the regulation of phagosome-lysosome fusion upon mycobacterial infection.


Asunto(s)
Calcineurina/metabolismo , Macrófagos , Proteínas de Microfilamentos/metabolismo , Mycobacterium/fisiología , Fagosomas , Actinas/metabolismo , Animales , Células Cultivadas , Quimiotaxis , Ciclosporina , Citoesqueleto/metabolismo , Activación Enzimática , Inhibidores Enzimáticos/metabolismo , Inmunosupresores/metabolismo , Interferón gamma/metabolismo , Lisosomas/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Macrófagos/microbiología , Masculino , Ratones , Ratones Endogámicos DBA , Ratones Noqueados , Mycobacterium/patogenicidad , Infecciones por Mycobacterium/metabolismo , Fagocitosis/fisiología , Fagosomas/metabolismo , Fagosomas/microbiología , Pinocitosis/fisiología , Transducción de Señal/fisiología , Tacrolimus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA