Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 300(5): 107269, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588811

RESUMEN

Coenzyme Q10 (CoQ10) is an important cofactor and antioxidant for numerous cellular processes, and its deficiency has been linked to human disorders including mitochondrial disease, heart failure, Parkinson's disease, and hypertension. Unfortunately, treatment with exogenous CoQ10 is often ineffective, likely due to its extreme hydrophobicity and high molecular weight. Here, we show that less hydrophobic CoQ species with shorter isoprenoid tails can serve as viable substitutes for CoQ10 in human cells. We demonstrate that CoQ4 can perform multiple functions of CoQ10 in CoQ-deficient cells at markedly lower treatment concentrations, motivating further investigation of CoQ4 as a supplement for CoQ10 deficiencies. In addition, we describe the synthesis and evaluation of an initial set of compounds designed to target CoQ4 selectively to mitochondria using triphenylphosphonium. Our results indicate that select versions of these compounds can successfully be delivered to mitochondria in a cell model and be cleaved to produce CoQ4, laying the groundwork for further development.


Asunto(s)
Ataxia , Mitocondrias , Enfermedades Mitocondriales , Debilidad Muscular , Ubiquinona , Humanos , Mitocondrias/enzimología , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/genética , Debilidad Muscular/enzimología , Debilidad Muscular/genética , Ubiquinona/análogos & derivados , Ubiquinona/deficiencia , Células Hep G2
2.
Am J Hum Genet ; 106(1): 92-101, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31866046

RESUMEN

Leigh syndrome is one of the most common neurological phenotypes observed in pediatric mitochondrial disease presentations. It is characterized by symmetrical lesions found on neuroimaging in the basal ganglia, thalamus, and brainstem and by a loss of motor skills and delayed developmental milestones. Genetic diagnosis of Leigh syndrome is complicated on account of the vast genetic heterogeneity with >75 candidate disease-associated genes having been reported to date. Candidate genes are still emerging, being identified when "omics" tools (genomics, proteomics, and transcriptomics) are applied to manipulated cell lines and cohorts of clinically characterized individuals who lack a genetic diagnosis. NDUFAF8 is one such protein; it has been found to interact with the well-characterized complex I (CI) assembly factor NDUFAF5 in a large-scale protein-protein interaction screen. Diagnostic next-generation sequencing has identified three unrelated pediatric subjects, each with a clinical diagnosis of Leigh syndrome, who harbor bi-allelic pathogenic variants in NDUFAF8. These variants include a recurrent splicing variant that was initially overlooked due to its deep-intronic location. Subject fibroblasts were found to express a complex I deficiency, and lentiviral transduction with wild-type NDUFAF8-cDNA ameliorated both the assembly defect and the biochemical deficiency. Complexome profiling of subject fibroblasts demonstrated a complex I assembly defect, and the stalled assembly intermediates corroborate the role of NDUFAF8 in early complex I assembly. This report serves to expand the genetic heterogeneity associated with Leigh syndrome and to validate the clinical utility of orphan protein characterization. We also highlight the importance of evaluating intronic sequence when a single, definitively pathogenic variant is identified during diagnostic testing.


Asunto(s)
Complejo I de Transporte de Electrón/deficiencia , Fibroblastos/patología , Enfermedad de Leigh/etiología , Enfermedades Mitocondriales/etiología , Proteínas Mitocondriales/genética , Mutación , NADH Deshidrogenasa/genética , Alelos , Femenino , Fibroblastos/metabolismo , Humanos , Lactante , Enfermedad de Leigh/patología , Masculino , Enfermedades Mitocondriales/patología , Linaje , Fenotipo
3.
Nat Metab ; 6(6): 1128-1142, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38720117

RESUMEN

Isolated complex I (CI) deficiencies are a major cause of primary mitochondrial disease. A substantial proportion of CI deficiencies are believed to arise from defects in CI assembly factors (CIAFs) that are not part of the CI holoenzyme. The biochemistry of these CIAFs is poorly defined, making their role in CI assembly unclear, and confounding interpretation of potential disease-causing genetic variants. To address these challenges, we devised a deep mutational scanning approach to systematically assess the function of thousands of NDUFAF6 genetic variants. Guided by these data, biochemical analyses and cross-linking mass spectrometry, we discovered that the CIAF NDUFAF6 facilitates incorporation of NDUFS8 into CI and reveal that NDUFS8 overexpression rectifies NDUFAF6 deficiency. Our data further provide experimental support of pathogenicity for seven novel NDUFAF6 variants associated with human pathology and introduce functional evidence for over 5,000 additional variants. Overall, our work defines the molecular function of NDUFAF6 and provides a clinical resource for aiding diagnosis of NDUFAF6-related diseases.


Asunto(s)
Complejo I de Transporte de Electrón , Enfermedades Mitocondriales , Proteínas Mitocondriales , Humanos , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Mitocondrias/metabolismo , Mitocondrias/genética
4.
bioRxiv ; 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37503166

RESUMEN

Coenzyme Q 10 (CoQ 10 ) is an important cofactor and antioxidant for numerous cellular processes, and its deficiency has been linked to human disorders including mitochondrial disease, heart failure, Parkinson's disease, and hypertension. Unfortunately, treatment with exogenous oral CoQ 10 is often ineffective, likely due to the extreme hydrophobicity and high molecular weight of CoQ 10 . Here, we show that less hydrophobic CoQ species with shorter isoprenoid tails can serve as viable substitutes for CoQ 10 in human cells. We demonstrate that CoQ 4 can perform multiple functions of CoQ 10 in CoQ-deficient cells at markedly lower treatment concentrations, motivating further investigation of CoQ 4 as a supplement for CoQ 10 deficiencies. In addition, we describe the synthesis and evaluation of an initial set of compounds designed to target CoQ 4 selectively to mitochondria using triphenylphosphonium (TPP). Our results indicate that select versions of these compounds can successfully be delivered to mitochondria in a cell model and be cleaved to produce CoQ 4 , laying the groundwork for further development.

5.
Cell Metab ; 31(4): 669-678, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32268114

RESUMEN

Defining functions for the full complement of proteins is a grand challenge in the post-genomic era and is essential for our understanding of basic biology and disease pathogenesis. In recent times, this endeavor has benefitted from a combination of modern large-scale and classical reductionist approaches-a process we refer to as "systems biochemistry"-that helps surmount traditional barriers to the characterization of poorly understood proteins. This strategy is proving to be particularly effective for mitochondria, whose well-defined proteome has enabled comprehensive analyses of the full mitochondrial system that can position understudied proteins for fruitful mechanistic investigations. Recent systems biochemistry approaches have accelerated the identification of new disease-related mitochondrial proteins and of long-sought "missing" proteins that fulfill key functions. Collectively, these studies are moving us toward a more complete understanding of mitochondrial activities and providing a molecular framework for the investigation of mitochondrial pathogenesis.


Asunto(s)
Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteoma/metabolismo , Animales , Humanos , Proteómica , Biología de Sistemas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA