Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 111(4): 1052-1068, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35710867

RESUMEN

Plants respond to low temperatures by altering the mRNA abundance of thousands of genes contributing to numerous physiological and metabolic processes that allow them to adapt. At the post-transcriptional level, these cold stress-responsive transcripts undergo alternative splicing, microRNA-mediated regulation and alternative polyadenylation, amongst others. Recently, m6 A, m5 C and other mRNA modifications that can affect the regulation and stability of RNA were discovered, thus revealing another layer of post-transcriptional regulation that plays an important role in modulating gene expression. The importance of m6 A in plant growth and development has been appreciated, although its significance under stress conditions is still underexplored. To assess the role of m6 A modifications during cold stress responses, methylated RNA immunoprecipitation sequencing was performed in Arabidopsis seedlings esposed to low temperature stress (4°C) for 24 h. This transcriptome-wide m6 A analysis revealed large-scale shifts in this modification in response to low temperature stress. Because m6 A is known to affect transcript stability/degradation and translation, we investigated these possibilities. Interestingly, we found that cold-enriched m6 A-containing transcripts demonstrated the largest increases in transcript abundance coupled with increased ribosome occupancy under cold stress. The significance of the m6 A epitranscriptome on plant cold tolerance was further assessed using the mta mutant in which the major m6 A methyltransferase gene was mutated. Compared to the wild-type, along with the differences in CBFs and COR gene expression levels, the mta mutant exhibited hypersensitivity to cold treatment as determined by primary root growth, biomass, and reactive oxygen species accumulation. Furthermore, and most importantly, both non-acclimated and cold-acclimated mta mutant demonstrated hypersensitivity to freezing tolerance. Taken together, these findings suggest a critical role for the epitranscriptome in cold tolerance of Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Frío , Congelación , Regulación de la Expresión Génica de las Plantas/genética , ARN Mensajero/genética
2.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37511395

RESUMEN

High temperature impairs starch biosynthesis in developing rice grains and thereby increases chalkiness, affecting the grain quality. Genome encoded microRNAs (miRNAs) fine-tune target transcript abundances in a spatio-temporal specific manner, and this mode of gene regulation is critical for a myriad of developmental processes as well as stress responses. However, the role of miRNAs in maintaining rice grain quality/chalkiness during high daytime temperature (HDT) stress is relatively unknown. To uncover the role of miRNAs in this process, we used five contrasting rice genotypes (low chalky lines Cyp, Ben, and KB and high chalky lines LaGrue and NB) and compared the miRNA profiles in the R6 stage caryopsis samples from plants subjected to prolonged HDT (from the onset of fertilization through R6 stage of caryopsis development). Our small RNA analysis has identified approximately 744 miRNAs that can be grouped into 291 families. Of these, 186 miRNAs belonging to 103 families are differentially regulated under HDT. Only two miRNAs, Osa-miR444f and Osa-miR1866-5p, were upregulated in all genotypes, implying that the regulations greatly varied between the genotypes. Furthermore, not even a single miRNA was commonly up/down regulated specifically in the three tolerant genotypes. However, three miRNAs (Osa-miR1866-3p, Osa-miR5150-3p and canH-miR9774a,b-3p) were commonly upregulated and onemiRNA (Osa-miR393b-5p) was commonly downregulated specifically in the sensitive genotypes (LaGrue and NB). These observations suggest that few similarities exist within the low chalky or high chalky genotypes, possibly due to high genetic variation. Among the five genotypes used, Cypress and LaGrue are genetically closely related, but exhibit contrasting chalkiness under HDT, and thus, a comparison between them is most relevant. This comparison revealed a general tendency for Cypress to display miRNA regulations that could decrease chalkiness under HDT compared with LaGrue. This study suggests that miRNAs could play an important role in maintaining grain quality in HDT-stressed rice.


Asunto(s)
MicroARNs , Oryza , Humanos , Temperatura , Oryza/genética , Calor , Grano Comestible/genética , MicroARNs/genética
3.
J Exp Bot ; 73(11): 3355-3371, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35274680

RESUMEN

The growth, survival, and productivity of plants are constantly challenged by diverse abiotic stresses. When plants are exposed to stress for the first time, they can capture molecular information and store it as a form of memory, which enables them to competently and rapidly respond to subsequent stress(es). This process is referred to as a priming-induced or acquired stress response. In this review, we discuss how (i) the storage and retrieval of the information from stress memory modulates plant physiological, cellular, and molecular processes in response to subsequent stress(es), (ii) the intensity, recurrence, and duration of priming stimuli influences the outcomes of the stress response, and (iii) the varying responses at different plant developmental stages. We highlight current understanding of the distinct and common molecular processes manifested at the epigenetic, (post-)transcriptional, and post-translational levels mediated by stress-associated molecules and metabolites, including phytohormones. We conclude by emphasizing how unravelling the molecular circuitry underlying diverse priming-stimuli-induced stress responses could propel the use of priming as a management practice for crop plants. This practice, in combination with precision agriculture, could aid in increasing yield quantity and quality to meet the rapidly rising demand for food.


Asunto(s)
Plantas , Estrés Fisiológico , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo
4.
Genomics ; 113(1 Pt 1): 159-170, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33253793

RESUMEN

To comprehensively annotate miRNAs and their targets in tea plant, Camellia sinensis, we sequenced small and messenger RNAs of 9 samples of Camellia sinensis var. assamica (YK-10), a diploid elite cultivar widely grown in southwest China. In order to identify targets of miRNAs, we sequenced two degradome sequencing profiles from leaves and roots of YK-10, respectively. By analyzing the small RNA-Seq profiles, we newly identified 137 conserved miRNAs and 23 species specific miRNAs in the genome of YK-10, which significantly improved the annotation of miRNAs in tea plant. Approximately 2000 differently expressed genes were identified when comparing RNA-Seq profiles of any two of the three organs selected in the study. Totally, more than 5000 targets of conserved miRNAs were identified in the two degradome profiles. Furthermore, our results suggest that a few miRNAs play roles in the biosynthesis pathways of theanine, caffeine and flavonoid. These results enhance our understanding of small RNA guided gene regulations in different organs of tea plant.


Asunto(s)
Camellia sinensis/genética , Redes Reguladoras de Genes , MicroARNs/genética , Camellia sinensis/clasificación , Evolución Molecular , MicroARNs/metabolismo , Filogenia , Componentes Aéreos de las Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Metabolismo Secundario/genética
5.
Plant Cell Environ ; 44(7): 2200-2210, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33866576

RESUMEN

Heat stress coinciding with reproductive stage leads to a significant loss in reproductive organs viability, resulting in lower seed-set and crop productivity. Successful fertilization and seed formation are determined by the viability of male and female reproductive organs. The impact of heat stress on the male reproductive organ (pollen) is studied more often compared to the female reproductive organ (pistil). This is attributed to easier accessibility of the pollen coupled with the notion that the pistil's role in fertilization and seed-set under heat stress is negligible. However, depending on species and developmental stages, recent studies reveal varying degrees of sensitivity of the pistil to heat stress. Remarkably, in some cases, the vulnerability of the pistil is even greater than the pollen. This article summarizes the current knowledge of the impact of heat stress on three critical stages of pistil for successful seed-set, that is, female reproductive organ development (gametogenesis), pollen-pistil interactions including pollen capture on stigma and pollen tube growth in style, as well as fertilization and early embryogenesis. Further, future research directions are suggested to unravel molecular basis of heat stress tolerance in pistil, which is critical for sustaining crop yields under predicted warming scenarios.


Asunto(s)
Flores/fisiología , Respuesta al Choque Térmico/fisiología , Polen/fisiología , Flores/anatomía & histología , Regulación de la Expresión Génica de las Plantas , Polinización , Semillas/fisiología , Termotolerancia
6.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924430

RESUMEN

The superoxide dismutases (SODs) play vital roles in controlling cellular reactive oxygen species (ROS) that are generated both under optimal as well as stress conditions in plants. The rice genome harbors seven SOD genes (CSD1, CSD2, CSD3, CSD4, FSD1, FSD2, and MSD) that encode seven constitutive transcripts. Of these, five (CSD2, CSD3, CSD4, FSD1, and MSD) utilizes an alternative splicing (AS) strategy and generate seven additional splice variants (SVs) or mRNA variants, i.e., three for CSD3, and one each for CSD2, CSD4, FSD1, and MSD. The exon-intron organization of these SVs revealed variations in the number and length of exons and/or untranslated regions (UTRs). We determined the expression patterns of SVs along with their constitutive forms of SODs in rice seedlings exposed to salt, osmotic, cold, heavy metal (Cu+2) stresses, as well as copper-deprivation. The results revealed that all seven SVs were transcriptionally active in both roots and shoots. When compared to their corresponding constitutive transcripts, the profiles of five SVs were almost similar, while two specific SVs (CSD3-SV4 and MSD-SV2) differed significantly, and the differences were also apparent between shoots and roots suggesting that the specific SVs are likely to play important roles in a tissue-specific and stress-specific manner. Overall, the present study has provided a comprehensive analysis of the SVs of SODs and their responses to stress conditions in shoots and roots of rice seedlings.


Asunto(s)
Empalme Alternativo/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Estrés Fisiológico/genética , Superóxido Dismutasa/genética , Secuencia de Bases , Frío , Cobre/toxicidad , Exones/genética , Regulación Enzimológica de la Expresión Génica , Intrones/genética , MicroARNs/genética , MicroARNs/metabolismo , Presión Osmótica , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Funct Integr Genomics ; 20(6): 739-761, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33089419

RESUMEN

Epigenetics is defined as changes in gene expression that are not associated with changes in DNA sequence but due to the result of methylation of DNA and post-translational modifications to the histones. These epigenetic modifications are known to regulate gene expression by bringing changes in the chromatin state, which underlies plant development and shapes phenotypic plasticity in responses to the environment and internal cues. This review articulates the role of histone modifications and DNA methylation in modulating biotic and abiotic stresses, as well as crop improvement. It also highlights the possibility of engineering epigenomes and epigenome-based predictive models for improving agronomic traits.


Asunto(s)
Epigenómica/tendencias , Código de Histonas/genética , Histonas/genética , Fitomejoramiento , Cromatina/genética , Productos Agrícolas/genética , Metilación de ADN/genética , Regulación de la Expresión Génica de las Plantas/genética , Desarrollo de la Planta/genética , Plantas/genética , Procesamiento Proteico-Postraduccional/genética
8.
BMC Genomics ; 19(Suppl 9): 983, 2019 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-30999850

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNAs that play important roles by regulating other genes. Rosa rugosa Thunb. is an important ornamental and edible plant, yet there are only a few studies on the miRNAs and their functions in R. rugosa. RESULTS: We sequenced 10 samll RNA profiles from the roots, petals, pollens, stamens, and leaves and 4 RNA-seq profiles in leaves and petals to analysis miRNA, phasiRNAs and mRNAs in R. rugosa. In addition, we acquired a degradome sequencing profile from leaf of R. rugosa to identify miRNA and phasiRNA targets using the SeqTar algorithm. We have identified 321 conserved miRNA homologs including primary transcripts for 25 conserved miRNAs, and 22 novel miRNAs. We identified 592 putative targets of the conserved miRNAs or tasiRNAs that showed significant accumulations of degradome reads. We found differential expression patterns of conserved miRNAs in five different tissues of R. rugosa. We identified three hundred and thirty nine 21 nucleotide (nt) PHAS loci, and forty nine 24 nt PHAS loci, respectively. Our results suggest that miR482 triggers generations of phasiRNAs by targeting nucleotide-binding, leucine-rich repeat (NB-LRR) disease resistance genes in R. rugosa. Our results also suggest that the deregulated genes in leaves and petals are significantly enriched in GO terms and KEGG pathways related to metabolic processes and photosynthesis. CONCLUSIONS: These results significantly enhanced our knowledge of the miRNAs and phasiRNAs, as well as their potential functions, in R. rugosa.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , MicroARNs/genética , Proteínas de Plantas/genética , ARN de Planta/genética , ARN Interferente Pequeño/genética , Rosa/genética , Biología Computacional , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética
9.
BMC Plant Biol ; 19(1): 447, 2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31651253

RESUMEN

BACKGROUND: MicroRNA-mediated gene regulatory networks play a significant role in plant growth and development and environmental stress responses. RESULTS: We identified 79 microRNAs (miRNAs) and multiple miRNA variants (isomiRs) belonging to 26 miRNA families in the primary root growth zone of maize seedlings grown at one of three water potentials: well-watered (- 0.02 MPa), mild water deficit stress (- 0.3 MPa), and severe water deficit stress (- 1.6 MPa). The abundances of 3 miRNAs (mild stress) and 34 miRNAs representing 17 families (severe stress) were significantly different in water-deficit stressed relative to well-watered controls (FDR < 0.05 and validated by stem loop RT-qPCR). Degradome sequencing revealed 213 miRNA-regulated transcripts and trancriptome profiling revealed that the abundance of 77 (miRNA-regulated) were regulated by water-defecit stress. miR399e,i,j-3p was strongly regulated by water-defcit stress implicating the possibility of nutrient deficiency during stress. CONCLUSIONS: We have identified a number of maize miRNAs that respond to specific water deficits applied to the primary root growth zone. We have also identified transcripts that are targets for miRNA regulation in the root growth zone under water-deficit stress. The miR399e,i,j-3p that is known to regulate phosphate uptake in response to nutrient deficiencies responds to water-deficit stress, however, at the seedling stage the seed provides adequate nutrients for root growth thus miR399e,i,j-3p may play a separate role in water-deficit responses. A water-deficit regulated maize transcript, similar to known miR399 target mimics, was identified and we hypothesized that it is another regulatory player, moderating the role of miR399e,i,j-3p, in primary root growth zone water deficit responses.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , MicroARNs/genética , Agua/fisiología , Zea mays/genética , Sequías , Raíces de Plantas/genética , Raíces de Plantas/fisiología , ARN de Planta/genética , Estrés Fisiológico , Zea mays/fisiología
10.
Int J Mol Sci ; 20(12)2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31212812

RESUMEN

Although the date palm tree is an extremophile with tolerance to drought and certain levels of salinity, the damage caused by extreme salt concentrations in the soil, has created a need to explore stress-responsive traits and decode their mechanisms. Metallothioneins (MTs) are low-molecular-weight cysteine-rich proteins that are known to play a role in decreasing oxidative damage during abiotic stress conditions. Our previous study identified date palm metallothionein 2A (PdMT2A) as a salt-responsive gene, which has been functionally characterized in yeast and Arabidopsis in this study. The recombinant PdMT2A protein produced in Escherichia coli showed high reactivity against the substrate 5'-dithiobis-2-nitrobenzoic acid (DTNB), implying that the protein has the property of scavenging reactive oxygen species (ROS). Heterologous overexpression of PdMT2A in yeast (Saccharomyces cerevisiae) conferred tolerance to drought, salinity and oxidative stresses. The PdMT2A gene was also overexpressed in Arabidopsis, to assess its stress protective function in planta. Compared to the wild-type control, the transgenic plants accumulated less Na+ and maintained a high K+/Na+ ratio, which could be attributed to the regulatory role of the transgene on transporters such as HKT, as demonstrated by qPCR assay. In addition, transgenic lines exhibited higher chlorophyll content, higher superoxide dismutase (SOD) activity and improved scavenging ability for reactive oxygen species (ROS), coupled with a better survival rate during salt stress conditions. Similarly, the transgenic plants also displayed better drought and oxidative stress tolerance. Collectively, both in vitro and in planta studies revealed a role for PdMT2A in salt, drought, and oxidative stress tolerance.


Asunto(s)
Adaptación Biológica , Resistencia a la Enfermedad/genética , Expresión Génica , Metalotioneína/genética , Phoeniceae/fisiología , Enfermedades de las Plantas/genética , Estrés Fisiológico/genética , Secuencia de Aminoácidos , Arabidopsis/microbiología , Arabidopsis/parasitología , Arabidopsis/fisiología , Sequías , Metalotioneína/química , Estrés Oxidativo , Fenotipo , Phoeniceae/clasificación , Phoeniceae/microbiología , Phoeniceae/parasitología , Filogenia , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Plantas Modificadas Genéticamente , Salinidad , Plantas Tolerantes a la Sal , Plantones , Suelo
11.
BMC Genomics ; 19(Suppl 2): 111, 2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29764387

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs involved in the post-transcriptional gene regulation and play a critical role in plant growth, development and stress responses. Watermelon (Citrullus lanatus L.) is one of the important agricultural crops worldwide. However, the watermelon miRNAs and phasiRNAs and their functions are not well explored. RESULTS: Here we carried out computational and experimental analysis of miRNAs and phased small interfering RNAs (phasiRNAs) in watermelon by analyzing 14 small RNA profiles from roots, leaves, androecium, petals, and fruits, and one published small RNA profile of mixed tissues. To identify the targets of miRNAs and phasiRNAs, we generated a degradome profile for watermelon leaf which is analyzed using the SeqTar algorithm. We identified 97 conserved pre-miRNAs, of which 58 have not been reported previously and 348 conserved mature miRNAs without precursors. We also found 9 novel pre-miRNAs encoding 18 mature miRNAs. One hundred and one 21 nucleotide (nt) PHAS loci, and two hundred and forty one 24 nt PHAS loci were also identified. We identified 127 conserved targets of the conserved miRNAs and TAS3-derived tasiRNAs by analyzing a degradome profile of watermelon leaf. CONCLUSIONS: The presented results provide a comprehensive view of small regulatory RNAs and their targets in watermelon.


Asunto(s)
Citrullus/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , MicroARNs/genética , ARN Interferente Pequeño/genética , Análisis de Secuencia de ARN/métodos , Biología Computacional , Flores/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Hojas de la Planta/genética , ARN de Planta/genética
12.
BMC Genomics ; 19(Suppl 10): 913, 2018 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-30598106

RESUMEN

BACKGROUND: Alfalfa (Medicago sativa L.) is a forage legume with significant agricultural value worldwide. MicroRNAs (miRNAs) are key components of post-transcriptional gene regulation and essentially regulate many aspects of plant growth and development. Although miRNAs were reported in alfalfa, their expression profiles in different tissues and the discovery of novel miRNAs as well as their targets have not been described in this plant species. RESULTS: To identify tissue-specific miRNA profiles in whole plants, shoots and roots of three different alfalfa genotypes (Altet-4, NECS-141and NF08ALF06) were used. Small RNA libraries were generated and sequenced using a high-throughput sequencing platform. Analysis of these libraries enabled identification of100 miRNA families; 21 of them belong to the highly conserved families while the remaining 79 families are conserved at the minimum between M. sativa and the model legume and close relative, M. truncatula. The profiles of the six abundantly expressed miRNA families (miR156, miR159, miR166, miR319, miR396 and miR398) were relatively similar between the whole plants, roots and shoots of these three alfalfa genotypes. In contrast, robust differences between shoots and roots for miR160 and miR408 levels were evident, and their expression was more abundant in the shoots. Additionally, 17 novel miRNAs were identified and the relative abundance of some of these differed between tissue types. Further, the generation and analysis of degradome libraries from the three alfalfa genotypes enabled confirmation of 69 genes as targets for 31 miRNA families in alfalfa. CONCLUSIONS: The miRNA profiles revealed both similarities and differences in the expression profiles between tissues within a genotype as well as between the genotypes. Among the highly conserved miRNA families, miR166 was the most abundantly expressed in almost all tissues from the three genotypes. The identification of conserved and novel miRNAs as well as their targets in different tissues of multiple genotypes increased our understanding of miRNA-mediated gene regulation in alfalfa and could provide valuable insights for practical research and plant improvement applications in alfalfa and related legume species.


Asunto(s)
Genotipo , Medicago sativa/genética , MicroARNs/genética , Secuencia de Bases , Perfilación de la Expresión Génica , Biblioteca de Genes , Variación Genética , Anotación de Secuencia Molecular , Especificidad de Órganos , ARN de Planta/genética
13.
BMC Genomics ; 19(Suppl 10): 935, 2018 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-30598105

RESUMEN

BACKGROUND: Soil salinity is one of the primary causes of yield decline in rice. Pokkali (Pok) is a highly salt-tolerant landrace, whereas IR29 is a salt-sensitive but widely cultivated genotype. Comparative analysis of these genotypes may offer a better understanding of the salinity tolerance mechanisms in rice. Although most stress-responsive genes are regulated at the transcriptional level, in many cases, changes at the transcriptional level are not always accompanied with the changes in protein abundance, which suggests that the transcriptome needs to be studied in conjunction with the proteome to link the phenotype of stress tolerance or sensitivity. Published reports have largely underscored the importance of transcriptional regulation during salt stress in these genotypes, but the regulation at the translational level has been rarely studied. Using RNA-Seq, we simultaneously analyzed the transcriptome and translatome from control and salt-exposed Pok and IR29 seedlings to unravel molecular insights into gene regulatory mechanisms that differ between these genotypes. RESULTS: Clear differences were evident at both transcriptional and translational levels between the two genotypes even under the control condition. In response to salt stress, 57 differentially expressed genes (DEGs) were commonly upregulated at both transcriptional and translational levels in both genotypes; the overall number of up/downregulated DEGs in IR29 was comparable at both transcriptional and translational levels, whereas in Pok, the number of upregulated DEGs was considerably higher at the translational level (544 DEGs) than at the transcriptional level (219 DEGs); in contrast, the number of downregulated DEGs (58) was significantly less at the translational level than at the transcriptional level (397 DEGs). These results imply that Pok stabilizes mRNAs and also efficiently loads mRNAs onto polysomes for translation during salt stress. CONCLUSION: Under salt stress, Pok is more efficient in maintaining cell wall integrity, detoxifying reactive oxygen species (ROS), translocating molecules and maintaining photosynthesis. The present study confirmed the known salt stress-associated genes and also identified a number of putative new salt-responsive genes. Most importantly, the study revealed that the translational regulation under salinity plays an important role in salt-tolerant Pok, but such regulation was less evident in the salt-sensitive IR29.


Asunto(s)
Perfilación de la Expresión Génica , Genotipo , Oryza/genética , Oryza/fisiología , Biosíntesis de Proteínas , Tolerancia a la Sal/genética , Ontología de Genes , Oryza/metabolismo , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , Especies Reactivas de Oxígeno/metabolismo
14.
BMC Genomics ; 18(1): 246, 2017 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-28330456

RESUMEN

BACKGROUND: Date palm, as one of the most important fruit crops in North African and West Asian countries including Oman, is facing serious growth problems due to salinity, arising from persistent use of saline water for irrigation. Although date palm is a relatively salt-tolerant plant species, its adaptive mechanisms to salt stress are largely unknown. RESULTS: In order to get an insight into molecular mechanisms of salt tolerance, RNA was profiled in leaves and roots of date palm seedlings subjected to NaCl for 10 days. Under salt stress, photosynthetic parameters were differentially affected; all gas exchange parameters were decreased but the quantum yield of PSII was unaffected while non-photochemical quenching was increased. Analyses of gene expression profiles revealed 2630 and 4687 genes were differentially expressed in leaves and roots, respectively, under salt stress. Of these, 194 genes were identified as commonly responding in both the tissue sources. Gene ontology (GO) analysis in leaves revealed enrichment of transcripts involved in metabolic pathways including photosynthesis, sucrose and starch metabolism, and oxidative phosphorylation, while in roots genes involved in membrane transport, phenylpropanoid biosynthesis, purine, thiamine, and tryptophan metabolism, and casparian strip development were enriched. Differentially expressed genes (DEGs) common to both tissues included the auxin responsive gene, GH3, a putative potassium transporter 8 and vacuolar membrane proton pump. CONCLUSIONS: Leaf and root tissues respond differentially to salinity stress and this study has revealed genes and pathways that are associated with responses to elevated NaCl levels and thus may play important roles in salt tolerance providing a foundation for functional characterization of salt stress-responsive genes in the date palm.


Asunto(s)
Perfilación de la Expresión Génica , Phoeniceae/genética , Hojas de la Planta/genética , Raíces de Plantas/genética , Salinidad , Tolerancia a la Sal/genética , Transcriptoma , Biología Computacional/métodos , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Fotosíntesis/genética , Carácter Cuantitativo Heredable , Estrés Fisiológico/genética
15.
Physiol Mol Biol Plants ; 23(2): 291-300, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28461718

RESUMEN

Agricultural productivity is severely hampered by drought in many parts of the globe. It is well-known that wild plant species can tolerate drought better when compared with their closely related cultivated plant species. Better drought adaptation of wild species over cultivated ones is accounted for their ability to differentially regulate gene expression. miRNAs, known to regulate gene expression at the post-transcriptional level, are admitted to play an important role in plant adaptation to stresses. This study aims at evaluating miRNA dynamics in a drought-tolerant wild Ipomoea campanulata L. and drought-sensitive cultivated Jacquemontia pentantha (Jacq.) of the family Convolvulaceae under ex situ drought. Sequencing profiles revealed that 34 conserved miRNA families were analogous between the two species. Drought altered expression levels of several of these miRNAs in both the species. Drought-tolerant I. campanulata showed upregulation of miR398, miR168, miR858, miR162 and miR408, while miR394 and miR171 were downregulated. Drought-sensitive J. pentantha showed upregulation of miR394, miR156, miR160, miR164, miR167, miR172, miR319, miR395, miR396, miR403 and downregulation of miR157. Basal miRNA levels and their drought mediated regulation were very different between the two species. Differential drought sensitivities of these two plant species can be attributed to these innate variations in miRNA levels and their expression.

16.
Plant J ; 77(1): 85-96, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24164591

RESUMEN

MicroRNA395 (miR395) is a conserved miRNA that targets a low-affinity sulfate transporter (AST68) and three ATP sulfurylases (APS1, APS3 and APS4) in higher plants. In this study, At2g28780 was confirmed as another target of miR395 in Arabidopsis. Interestingly, several dicots contained genes homologous to At2g28780 and a cognate miR395 complementary site but possess a gradient of mismatches at the target site. It is well established that miR395 is induced during S deprivation in Arabidopsis; however, the signaling pathways that mediate this regulation are unknown. Several findings in the present study demonstrate that redox signaling plays an important role in induction of miR395 during S deprivation. These include the following results: (i) glutathione (GSH) supplementation suppressed miR395 induction in S-deprived plants (ii) miR395 is induced in Arabidopsis seedlings exposed to Arsenate or Cu(2+) , which induces oxidative stress (iii), S deprivation-induced oxidative stress, and (iv) compromised induction of miR395 during S deprivation in cad2 mutant (deficient in GSH biosynthesis) that is defective in glutaredoxin-dependent redox signaling and ntra/ntrb (defective in thioredoxin reductases a and b) double mutants that are defective in thioredoxin-dependent redox signaling. Collectively, these findings strongly support the involvement of redox signaling in inducing the expression of miR395 during S deprivation in Arabidopsis.


Asunto(s)
Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Transducción de Señal , Sulfato Adenililtransferasa/genética , Sulfatos/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glutatión/metabolismo , Metales Pesados/farmacología , Modelos Biológicos , Mutación , Oxidación-Reducción , Estrés Oxidativo , Componentes Aéreos de las Plantas/efectos de los fármacos , Componentes Aéreos de las Plantas/genética , Componentes Aéreos de las Plantas/fisiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente , ARN de Planta/genética , Plantones/efectos de los fármacos , Plantones/genética , Plantones/fisiología , Alineación de Secuencia , Sulfato Adenililtransferasa/metabolismo , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/metabolismo
17.
BMC Genomics ; 16: 423, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26059339

RESUMEN

BACKGROUND: MiRNAs and phasiRNAs are negative regulators of gene expression. These small RNAs have been extensively studied in plant model species but only 10 mature microRNAs are present in miRBase version 21, the most used miRNA database, and no phasiRNAs have been identified for the model legume Phaseolus vulgaris. Thanks to the recent availability of the first version of the common bean genome, degradome data and small RNA libraries, we are able to present here a catalog of the microRNAs and phasiRNAs for this organism and, particularly, we suggest new protagonists in the symbiotic nodulation events. RESULTS: We identified a set of 185 mature miRNAs, including 121 previously unpublished sequences, encoded by 307 precursors and distributed in 98 families. Degradome data allowed us to identify a total of 181 targets for these miRNAs. We reveal two regulatory networks involving conserved miRNAs: those known to play crucial roles in the establishment of nodules, and novel miRNAs present only in common bean, suggesting a specific role for these sequences. In addition, we identified 125 loci that potentially produce phased small RNAs, with 47 of them having all the characteristics of being triggered by a total of 31 miRNAs, including 14 new miRNAs identified in this study. CONCLUSIONS: We provide here a set of new small RNAs that contribute to the broader knowledge of the sRNAome of Phaseolus vulgaris. Thanks to the identification of the miRNA targets from degradome analysis and the construction of regulatory networks between the mature microRNAs, we present here the probable functional regulation associated with the sRNAome and, particularly, in N2-fixing symbiotic nodules.


Asunto(s)
Phaseolus/genética , Proteínas de Plantas/genética , ARN de Planta/análisis , Análisis de Secuencia de ARN/métodos , Secuencia Conservada , Bases de Datos Genéticas , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , MicroARNs/análisis , MicroARNs/metabolismo , Phaseolus/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , ARN de Planta/metabolismo , ARN Interferente Pequeño/análisis , ARN Interferente Pequeño/metabolismo
18.
BMC Genomics ; 15: 20, 2014 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24410969

RESUMEN

BACKGROUND: Regulatory function of small non-coding RNAs (sRNA) in response to environmental and developmental cues has been established. Additionally, sRNA, also plays an important role in maintaining the heterochromatin and centromere structures of the chromosome. Papaya, a trioecious species with recently evolved sex chromosomes, has emerged as an excellent model system to study sex determination and sex chromosome evolution in plants. However, role of small RNA in papaya sex determination is yet to be explored. RESULTS: We analyzed the high throughput sRNAs reads in the Illumina libraries prepared from male, female, and hermaphrodite flowers of papaya. Using the sRNA reads, we identified 29 miRNAs that were not previously reported from papaya. Including this and two previous studies, a total of 90 miRNAs has been identified in papaya. We analyzed the expression of these miRNAs in each sex types. A total of 65 miRNAs, including 31 conserved and 34 novel mirNA, were detected in at least one library. Fourteen of the 65 miRNAs were differentially expressed among different sex types. Most of the miRNA expressed higher in male flowers were related to the auxin signaling pathways, whereas the miRNAs expressed higher in female flowers were the potential regulators of the apical meristem identity genes. Aligning the sRNA reads identified the sRNA hotspots adjacent to the gaps of the X and Y chromosomes. The X and Y chromosomes sRNA hotspots has a 7.8 and 4.4 folds higher expression of sRNA, respectively, relative to the chromosome wide average. Approximately 75% of the reads aligned to the X chromosome hotspot was identical to that of the Y chromosome hotspot. CONCLUSION: By analyzing the large-scale sRNA sequences from three sex types, we identified the sRNA hotspots flanking the gaps of papaya X, Y, and Yh chromosome. The sRNAs expression patterns in these regions were reminiscent of the pericentromeric region indicating that the only remaining gap in each of these chromosomes is likely the centromere. We also identified 14 differentially expressed miRNAs in male, female and hermaphrodite flowers of papaya. Our results provide valuable information toward understanding the papaya sex determination.


Asunto(s)
Carica/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , ARN Pequeño no Traducido/metabolismo , Cromosomas Sexuales/genética , Secuencia de Bases , Carica/metabolismo , Centrómero , Cromosomas de las Plantas/genética , Biblioteca de Genes , MicroARNs/metabolismo , ARN Pequeño no Traducido/genética , Análisis de Secuencia de ARN
19.
J Exp Bot ; 65(2): 725-39, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24376253

RESUMEN

DICER-like 1 (DCL1) is a major player in microRNA (miRNA) biogenesis and accordingly, its few known loss-of-function mutants are either lethal or display arrested development. Consequently, generation of dcl1 mutants by reverse genetics and functional analysis of DCL1 in late-developing organs are challenging. Here, these challenges were resolved through the unique use of trans-activated RNA interference. Global, as well as organ-specific tomato DCL1 (SlDCL1) silencing was induced by crossing the generated responder line (OP:SlDCL1IR) with the appropriate driver line. Constitutive trans-activation knocked down SlDCL1 levels by ~95%, resulting in severe abnormalities including post-germination growth arrest accompanied by decreased miRNA and 21-nucleotide small RNA levels, but prominently elevated levels of 22-nucleotide small RNAs. The increase in the 22-nucleotide small RNAs was correlated with specific up-regulation of SlDCL2b and SlDCL2d, which are probably involved in their biogenesis. Leaf- and flower-specific OP:SlDCL1IR trans-activation inhibited blade outgrowth, induced premature bud senescence and produced pale petals, respectively, emphasizing the importance of SlDCL1-dependent small RNAs in these processes. Together, these results establish OP:SlDCL1IR as an efficient tool for analysing processes regulated by SlDCL1-mediated gene regulation in tomato.


Asunto(s)
MicroARNs/genética , Mutación/genética , Proteínas de Plantas/metabolismo , Ribonucleasa III/metabolismo , Solanum lycopersicum/genética , Activación Transcripcional/genética , Secuencia de Bases , Carotenoides/metabolismo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genes Reporteros , MicroARNs/metabolismo , Datos de Secuencia Molecular , Fenotipo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , ARN de Planta/genética , ARN de Planta/metabolismo , ARN Interferente Pequeño/metabolismo , Plantones/genética , Homología de Secuencia de Aminoácido , Regulación hacia Arriba/genética
20.
Nucleic Acids Res ; 40(4): e28, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22140118

RESUMEN

In plants, microRNAs (miRNAs) regulate their mRNA targets by precisely guiding cleavages between the 10th and 11th nucleotides in the complementary regions. High-throughput sequencing-based methods, such as PARE or degradome profiling coupled with a computational analysis of the sequencing data, have recently been developed for identifying miRNA targets on a genome-wide scale. The existing algorithms limit the number of mismatches between a miRNA and its targets and strictly do not allow a mismatch or G:U Wobble pair at the position 10 or 11. However, evidences from recent studies suggest that cleavable targets with more mismatches exist indicating that a relaxed criterion can find additional miRNA targets. In order to identify targets including the ones with weak complementarities from degradome data, we developed a computational method called SeqTar that allows more mismatches and critically mismatch or G:U pair at the position 10 or 11. Precisely, two statistics were introduced in SeqTar, one to measure the alignment between miRNA and its target and the other to quantify the abundance of reads at the center of the miRNA complementary site. By applying SeqTar to publicly available degradome data sets from Arabidopsis and rice, we identified a substantial number of novel targets for conserved and non-conserved miRNAs in addition to the reported ones. Furthermore, using RLM 5'-RACE assay, we experimentally verified 12 of the novel miRNA targets (6 each in Arabidopsis and rice), of which some have more than 4 mismatches and have mismatches or G:U pairs at the position 10 or 11 in the miRNA complementary sites. Thus, SeqTar is an effective method for identifying miRNA targets in plants using degradome data sets.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , MicroARNs/química , ARN Mensajero/química , ARN de Planta/química , Análisis de Secuencia de ARN , Algoritmos , Arabidopsis/genética , Disparidad de Par Base , Biología Computacional/métodos , MicroARNs/metabolismo , Oryza/genética , Poliadenilación , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA