Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Neurobiol Dis ; 180: 106079, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36918046

RESUMEN

Dysregulated cortical expression of the neural cell adhesion molecule (NCAM) and deficits of its associated polysialic acid (polySia) have been found in Alzheimer's disease and schizophrenia. However, the functional role of polySia in cortical synaptic plasticity remains poorly understood. Here, we show that acute enzymatic removal of polySia in medial prefrontal cortex (mPFC) slices leads to increased transmission mediated by the GluN1/GluN2B subtype of N-methyl-d-aspartate receptors (NMDARs), increased NMDAR-mediated extrasynaptic tonic currents, and impaired long-term potentiation (LTP). The latter could be fully rescued by pharmacological suppression of GluN1/GluN2B receptors, or by application of short soluble polySia fragments that inhibited opening of GluN1/GluN2B channels. These treatments and augmentation of synaptic NMDARs with the glycine transporter type 1 (GlyT1) inhibitor sarcosine also restored LTP in mice deficient in polysialyltransferase ST8SIA4. Furthermore, the impaired performance of polySia-deficient mice and two models of Alzheimer's disease in the mPFC-dependent cognitive tasks could be rescued by intranasal administration of polySia fragments. Our data demonstrate the essential role of polySia-NCAM in the balancing of signaling through synaptic/extrasynaptic NMDARs in mPFC and highlight the therapeutic potential of short polySia fragments to restrain GluN1/GluN2B-mediated signaling.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Ácidos Siálicos/metabolismo , Cognición , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Receptores de N-Metil-D-Aspartato
2.
J Integr Neurosci ; 20(2): 321-329, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34258930

RESUMEN

Ketone bodies have been the topic of research for their possible therapeutic neurotropic effects in various neurological diseases such as Parkinson's disease, dementia, and seizures. However, continuing research on ketone bodies as a prophylactic agent for decreasing the risk for various neurodegenerative diseases is currently required. In this paper, hippocampal HT-22 cells were treated with ß-hydroxybutyric acid at different doses to elucidate the neurotropic effects. In addition, markers of oxidative stress, mitochondrial function, and apoptosis were investigated. As a result, the ketone body (ß-hydroxybutyric acid) showed a significant increase in hippocampal neuronal viability at a moderate dose. Results show that ß-hydroxybutyric acid exhibited antioxidant effect by decreasing prooxidant oxidative stress markers such as reactive oxygen species, nitrite content, and increasing glutathione content leading to decreased lipid peroxidation. Results show that ß-hydroxybutyric acid improved mitochondrial functions by increasing Complex-I and Complex-IV activities and showing that ß-hydroxybutyric acid significantly reduces caspase-1 and caspase-3 activities. Finally, using computational pharmacokinetics and molecular modeling software, we validated the pharmacokinetic effects and pharmacodynamic (N-Methyl-D-aspartic acid and acetylcholinesterase) interactions of ß-hydroxybutyric acid. The computational studies demonstrate that ß-hydroxybutyric acid can interact with N-Methyl-D-aspartic acid receptor and cholinesterase enzyme (the prime pharmacodynamic targets for cognitive impairment) and further validates its oral absorption, distribution into the central nervous system. Therefore, this work highlights the neuroprotective potential of ketone bodies in cognitive-related neurodegenerative diseases.


Asunto(s)
Ácido 3-Hidroxibutírico/farmacología , Apoptosis/efectos de los fármacos , Hipocampo/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Células Cultivadas , Ratones
3.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34769068

RESUMEN

The greatest risk factor for developing Alzheimer's disease (AD) is increasing age. Understanding the changes that occur in aging that make an aged brain more susceptible to developing AD could result in novel therapeutic targets. In order to better understand these changes, the current study utilized mice harboring a regulatable mutant P301L human tau transgene (rTg(TauP301L)4510), in which P301L tau expression can be turned off or on by the addition or removal of doxycycline in the drinking water. This regulatable expression allowed for assessment of aging independent of prolonged mutant tau expression. Our results suggest that P301L expression in aged mice enhances memory deficits in the Morris water maze task. These behavioral changes may be due to enhanced late-stage tau pathology, as evidenced by immunoblotting and exacerbated hippocampal dysregulation of glutamate release and uptake measured by the microelectrode array technique. We additionally observed changes in proteins important for the regulation of glutamate and tau phosphorylation that may mediate these age-related changes. Thus, age and P301L tau interact to exacerbate tau-induced detrimental alterations in aged animals.


Asunto(s)
Envejecimiento , Expresión Génica , Proteínas tau/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Ácido Glutámico/metabolismo , Humanos , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Transgénicos , Mutación , Proteínas tau/metabolismo
4.
Brain Behav Immun ; 88: 815-825, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32454134

RESUMEN

Western diet (WD) feeding disrupts core clock gene expression in peripheral tissues and contributes to WD-induced metabolic disease. The hippocampus, the mammalian center for memory, is also sensitive to WD feeding, but whether the WD disrupts its core clock is unknown. To this end, male mice were maintained on a WD for 16 weeks and diurnal metabolism, gene expression and memory were assessed. WD-induced obesity disrupted the diurnal rhythms of whole-body metabolism, markers of inflammation and hepatic gene expression, but did not disrupt diurnal expression of hypothalamic Bmal1, Npas2 and Per2. However, all measured core clock genes were disrupted in the hippocampus after WD feeding and the expression pattern of genes implicated in Alzheimer's disease and synaptic function were altered. Finally, WD feeding disrupted hippocampal memory in a task- and time-dependent fashion. Our results implicate WD-induced alterations in the rhythmicity of hippocampal gene expression in the etiology of diet-induced memory deficits.


Asunto(s)
Ritmo Circadiano , Regulación de la Expresión Génica , Hipocampo , Obesidad/genética , Animales , Ritmo Circadiano/genética , Dieta Occidental/efectos adversos , Expresión Génica , Masculino , Ratones
5.
Int J Neuropsychopharmacol ; 22(6): 372-382, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31038173

RESUMEN

BACKGROUND: Although depression is the leading cause of disability worldwide, its pathophysiology is poorly understood. Our previous study showed that hippocampal peroxisome proliferator-activated receptor δ (PPARδ) overexpression displays antidepressive effect and enhances hippocampal neurogenesis during chronic stress. Herein, we further extended our curiosity to investigate whether downregulating PPARδ could cause depressive-like behaviors through downregulation of neurogenesis. METHODS: Stereotaxic injection of lentiviral vector, expressing short hairpin RNA complementary to the coding exon of PPARδ, was done into the bilateral dentate gyri of the hippocampus, and the depression-like behaviors were observed in mice. Additionally, hippocampal neurogenesis, brain-derived neurotrophic factor and cAMP response element-binding protein were measured both in vivo and in vitro. RESULTS: Hippocampal PPARδ knockdown caused depressive-like behaviors and significantly decreased neurogenesis, neuronal differentiation, levels of mature brain-derived neurotrophic factor and phosphorylated cAMP response element-binding protein in the hippocampus. In vitro study further confirmed that PPARδ knockdown could inhibit proliferation and differentiation of neural stem cells. Furthermore, these effects were mimicked by repeated systemic administration of a PPARδ antagonist, GSK0660 (1 or 3 mg/kg i.p. for 21 d). CONCLUSIONS: These findings suggest that downregulation of hippocampal PPARδ is associated with depressive behaviors in mice through an inhibitory effect on cAMP response element-binding protein/brain-derived neurotrophic factor-mediated adult neurogenesis in the hippocampus, providing new insights into the pathogenesis of depression.


Asunto(s)
Conducta Animal/fisiología , Giro Dentado/metabolismo , Depresión/fisiopatología , Neurogénesis/efectos de los fármacos , PPAR delta/fisiología , Animales , Conducta Animal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a CREB/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Giro Dentado/efectos de los fármacos , Depresión/inducido químicamente , Regulación hacia Abajo/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Masculino , Ratones , Células-Madre Neurales/efectos de los fármacos , PPAR delta/genética , ARN Interferente Pequeño/farmacología , Sulfonas/farmacología , Tiofenos/farmacología
6.
J Am Coll Nutr ; 38(8): 693-702, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31008686

RESUMEN

An estimated 9% of the American population experiences type II diabetes mellitus (T2DM) due to diet or genetic predisposition. Recent reports indicate that patients with T2DM are at increased risk for cognitive dysfunctions, as observed in conditions like Alzheimer's disease (AD). In addition, AD is the leading cause of dementia, highlighting the urgency of developing novel therapeutic targets for T2DM-induced cognitive deficits. The peroxisome proliferator activated receptor-δ (PPAR-δ) is highly expressed in the brain and has been shown to play an important role in spatial memory and hippocampal neurogenesis. However, the effect of PPAR-δ agonists on T2DM-induced cognitive impairment has not been explored. In this study, the effects of GW0742 (a selective PPAR-δ agonist) on hippocampal synaptic transmission, plasticity, and spatial memory were investigated in the db/db mouse model of T2DM. Oral administration of GW0742 for 2 weeks significantly improved hippocampal long-term potentiation. In addition, GW0742 effectively prevented deficits in hippocampal dependent spatial memory in db/db mice. PPAR-δ-mediated improvements in synaptic plasticity and behavior were accompanied by a significant recovery in hippocampal α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated synaptic transmission. Our findings suggest that activation of PPAR-δ might ameliorate T2DM-induced impairments in hippocampal synaptic plasticity and memory.


Asunto(s)
Disfunción Cognitiva/prevención & control , Diabetes Mellitus Tipo 2/complicaciones , PPAR delta/agonistas , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores AMPA/metabolismo , Tiazoles/farmacología , Animales , Hipocampo/efectos de los fármacos , Ratones Endogámicos NOD , Proteínas Serina-Treonina Quinasas/genética , Receptores AMPA/genética
7.
Toxicol Mech Methods ; 29(6): 457-466, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31010378

RESUMEN

Cognitive deficits are commonly reported by patients following treatment with chemotherapeutic agents. Anthracycline-containing chemotherapy regimens are associated with cognitive impairment and reductions in neuronal connectivity in cancer survivors, and doxorubicin (Dox) is a commonly used anthracycline. Although it has been reported that Dox distribution to the central nervous system (CNS) is limited, considerable Dox concentrations are observed in the brain with co-administration of certain medications. Additionally, pro-inflammatory cytokines, which are overproduced in cancer or in response to chemotherapy, can reduce the integrity of the blood-brain barrier (BBB). Therefore, the aim of this study was to evaluate the acute neurotoxic effects of Dox on hippocampal neurons. In this study, we utilized a hippocampal cell line (H19-7/IGF-IR) along with rodent hippocampal slices to evaluate the acute neurotoxic effects of Dox. Hippocampal slices were used to measure long-term potentiation (LTP), and expression of proteins was determined by immunoblotting. Cellular assays for mitochondrial complex activity and lipid peroxidation were also utilized. We observed reduction in LTP in hippocampal slices with Dox. In addition, lipid peroxidation was increased as measured by thiobarbituric acid reactive substances content indicating oxidative stress. Caspase-3 expression was increased indicating an increased propensity for cell death. Finally, the phosphorylation of signaling molecules which modulate LTP including extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase, and Akt were increased. This data indicates that acute Dox exposure dose-dependently impairs synaptic processes associated with hippocampal neurotransmission, induces apoptosis, and increases lipid peroxidation leading to neurotoxicity.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Doxorrubicina/toxicidad , Hipocampo/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Animales , Técnicas de Cultivo de Célula , Línea Celular , Relación Dosis-Respuesta a Droga , Complejo I de Transporte de Electrón/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Neuronas/metabolismo , Neuronas/patología , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/patología , Ratas , Ratas Sprague-Dawley
8.
Brain Behav Immun ; 73: 533-545, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29935310

RESUMEN

Increasing evidence demonstrates that the neurotoxicity of amyloid-beta (Aß) deposition plays a causative role in Alzheimer's disease (AD). Herein, we evaluated the neuroprotective effects of 6α-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777), a specific G-protein coupled bile acid receptor 1 (TGR5) agonist, in the Aß1-42-treated mouse model of acute neurotoxicity. Single intracerebroventricular (i.c.v.) injection of aggregated Aß1-42 (410 pmol/mouse; 5 µl) into the mouse brain induced cognitive impairment, neuroinflammation, apoptosis, and synaptic dysfunction. In contrast, INT-777 (1.5 or 3.0 µg/mouse, i.c.v.) significantly improved Aß1-42-induced cognitive impairment, as reflected by better performance in memory tests. Importantly, INT-777 treatment reversed Aß1-42-induced TGR5 down-regulation, suppressed the increase of nuclear NF-κB p65, and mitigated neuroinflammation, as evidenced by lower proinflammatory cytokines and less Iba1-positive cells in the hippocampus and frontal cortex. INT-777 treatment also pronouncedly suppressed apoptosis through the reduction of TUNEL-positive cells, decreased caspase-3 activation, increased the ratio of Bcl-2/Bax, and ameliorated synaptic dysfunction by promoting dendritic spine generation with the upregulation of postsynaptic and presynaptic proteins (PSD95 and synaptophysin) in Aß1-42-treated mice. Our results indicate that INT-777 has potent neuroprotective effects against Aß1-42-induced neurotoxicity. Taken together, these findings suggest that the activation of TGR5 could be a novel and promising strategy for the treatment of AD.


Asunto(s)
Ácidos Cólicos/farmacología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/efectos adversos , Péptidos beta-Amiloides/metabolismo , Animales , Apoptosis/efectos de los fármacos , Encéfalo/metabolismo , Caspasa 3/metabolismo , Ácidos Cólicos/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Trastornos de la Memoria/metabolismo , Ratones , Ratones Endogámicos ICR , Neuroinmunomodulación/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Fragmentos de Péptidos/efectos adversos , Fragmentos de Péptidos/metabolismo
9.
Neural Plast ; 2018: 4593530, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30150999

RESUMEN

Adiponectin, the most abundant plasma adipokine, plays an important role in the regulation of glucose and lipid metabolism. Adiponectin also possesses insulin-sensitizing, anti-inflammatory, angiogenic, and vasodilatory properties which may influence central nervous system (CNS) disorders. Although initially not thought to cross the blood-brain barrier, adiponectin enters the brain through peripheral circulation. In the brain, adiponectin signaling through its receptors, AdipoR1 and AdipoR2, directly influences important brain functions such as energy homeostasis, hippocampal neurogenesis, and synaptic plasticity. Overall, based on its central and peripheral actions, recent evidence indicates that adiponectin has neuroprotective, antiatherogenic, and antidepressant effects. However, these findings are not without controversy as human observational studies report differing correlations between plasma adiponectin levels and incidence of CNS disorders. Despite these controversies, adiponectin is gaining attention as a potential therapeutic target for diverse CNS disorders, such as stroke, Alzheimer's disease, anxiety, and depression. Evidence regarding the emerging role for adiponectin in these disorders is discussed in the current review.


Asunto(s)
Adiponectina/metabolismo , Encéfalo/metabolismo , Enfermedades del Sistema Nervioso Central/metabolismo , Animales , Encéfalo/fisiopatología , Humanos , Receptores de Adiponectina/metabolismo , Transducción de Señal
10.
Int J Mol Sci ; 19(7)2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29933579

RESUMEN

The brain contains various forms of lipids that are important for maintaining its structural integrity and regulating various signaling cascades. Autotaxin (ATX) is an ecto-nucleotide pyrophosphatase/phosphodiesterase-2 enzyme that hydrolyzes extracellular lysophospholipids into the lipid mediator lysophosphatidic acid (LPA). LPA is a major bioactive lipid which acts through G protein-coupled receptors (GPCRs) and plays an important role in mediating cellular signaling processes. The majority of synthesized LPA is derived from membrane phospholipids through the action of the secreted enzyme ATX. Both ATX and LPA are highly expressed in the central nervous system. Dysfunctional expression and activity of ATX with associated changes in LPA signaling have recently been implicated in the pathogenesis of Alzheimer's disease (AD). This review focuses on the current understanding of LPA signaling, with emphasis on the importance of the autotaxin⁻lysophosphatidic acid (ATX⁻LPA) pathway and its alterations in AD and a brief note on future therapeutic applications based on ATX⁻LPA signaling.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Sistema Nervioso Central/metabolismo , Lisofosfolípidos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Transducción de Señal/genética , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/patología , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Regulación de la Expresión Génica , Humanos , Hidrólisis , Fármacos Neuroprotectores/uso terapéutico , Hidrolasas Diéster Fosfóricas/genética , Receptores del Ácido Lisofosfatídico/genética , Receptores del Ácido Lisofosfatídico/metabolismo , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo
11.
Toxicol Mech Methods ; 28(3): 177-186, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28874085

RESUMEN

Benzylpiperazine has been designated as Schedule I substance under the Controlled Substances Act by Drug Enforcement Administration. Benzylpiperazine is a piperazine derivative, elevates both dopamine and serotonin extracellular levels producing stimulatory and hallucinogenic effects, respectively, similar to methylenedioxymethamphetamine (MDMA). However, the comparative neurotoxic effects of Piperazine derivatives (benzylpiperazine and benzoylpiperazine) have not been elucidated. Here, piperazine derivatives (benzylpiperazine and benzoylpiperazine) were synthesized in our lab and the mechanisms of cellular-based neurotoxicity were elucidated in a dopaminergic human neuroblastoma cell line (SH-SY5Y). We evaluated the in vitro effects of benzylpiperazine and benzoylpiperazine on the generation of reactive oxygen species, lipid peroxidation, mitochondrial complex-I activity, catalase activity, superoxide dismutase activity, glutathione content, Bax, caspase-3, Bcl-2 and tyrosine hydroxylase expression. Benzylpiperazine and benzoylpiperazine induced oxidative stress, inhibited mitochondrial functions and stimulated apoptosis. This study provides a germinal assessment of the neurotoxic mechanisms induced by piperazine derivatives that lead to neuronal cell death.


Asunto(s)
Apoptosis/efectos de los fármacos , Agonistas de Dopamina/toxicidad , Neuronas Dopaminérgicas/efectos de los fármacos , Alucinógenos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Piperazinas/toxicidad , Proteínas Reguladoras de la Apoptosis/agonistas , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/metabolismo , Biomarcadores/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Drogas de Diseño/química , Drogas de Diseño/toxicidad , Agonistas de Dopamina/química , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo I de Transporte de Electrón/metabolismo , Alucinógenos/química , Humanos , Peroxidación de Lípido/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mitocondrias/metabolismo , Estructura Molecular , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Concentración Osmolar , Piperazinas/química , Especies Reactivas de Oxígeno/agonistas , Especies Reactivas de Oxígeno/metabolismo
12.
Neurobiol Learn Mem ; 139: 98-108, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28034784

RESUMEN

Retrieval of a memory appears to render it unstable until the memory is once again re-stabilized or reconsolidated. Although the occurrence and consequences of reconsolidation have received much attention in recent years, the specific mechanisms that underlie the process of reconsolidation have not been fully described. Here, we present the first electrophysiological model of the synaptic plasticity changes underlying the different stages of reconsolidation of a conditioned fear memory. In this model, retrieval of a fear memory results in immediate but transient alterations in synaptic plasticity, mediated by modified expression of the glutamate receptor subunits GluA1 and GluA2 in the hippocampus of rodents. Retrieval of a memory results in an immediate impairment in LTP, which is enhanced 6h following memory retrieval. Conversely, memory retrieval results in an immediate enhancement of LTD, which decreases with time. These changes in plasticity are accompanied by decreased expression of GluA2 receptor subunits. Recovery of LTP and LTD correlates with progressive overexpression of GluA2 receptor subunits. The contribution of the GluA2 receptor was confirmed by interfering with receptor expression at the postsynaptic sites. Blocking GluA2 endocytosis restored LTP and attenuated LTD during the initial portion of the reconsolidation period. These findings suggest that altered GluA2 receptor expression is one of the mechanisms that controls different forms of synaptic plasticity during reconsolidation.


Asunto(s)
Cerebelo/metabolismo , Condicionamiento Clásico/fisiología , Miedo/fisiología , Hipocampo/metabolismo , Consolidación de la Memoria/fisiología , Plasticidad Neuronal/fisiología , Receptores AMPA/metabolismo , Animales , Péptidos de Penetración Celular/farmacología , Cerebelo/efectos de los fármacos , Condicionamiento Clásico/efectos de los fármacos , Endocitosis/efectos de los fármacos , Miedo/efectos de los fármacos , Hipocampo/efectos de los fármacos , Masculino , Consolidación de la Memoria/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores AMPA/genética , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
13.
J Neurochem ; 138(2): 307-16, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27168075

RESUMEN

Peripheral infections increase the propensity and severity of seizures in susceptible populations. We have previously shown that intraperitoneal injection of a viral mimic, polyinosinic-polycytidylic acid (PIC), elicits hypersusceptibility of mice to kainic acid (KA)-induced seizures. This study was undertaken to determine whether this seizure hypersusceptibility entails alterations in glutamate signaling. Female C57BL/6 mice were intraperitoneally injected with PIC, and after 24 h, glutamate homeostasis in the hippocampus was monitored using the enzyme-based microelectrode arrays. PIC challenge robustly increased the level of resting extracellular glutamate. While pre-synaptic potassium-evoked glutamate release was not affected, glutamate uptake was profoundly impaired and non-vesicular glutamate release was augmented, indicating functional alterations of astrocytes. Electrophysiological examination of hippocampal slices from PIC-challenged mice revealed a several fold increase in the basal synaptic transmission as compared to control slices. PIC challenge also increased the probability of pre-synaptic glutamate release as seen from a reduction of paired-pulse facilitation and synaptic plasticity as seen from an enhancement of long-term potentiation. Altogether, our results implicate a dysregulation of astrocytic glutamate metabolism and an alteration of excitatory synaptic transmission as the underlying mechanism for the development of hippocampal hyperexcitability, and consequently seizure hypersusceptibility following peripheral PIC challenge. Peripheral infections/inflammations enhance seizure susceptibility. Here, we explored the effect of peritoneal inflammation induced by a viral mimic on glutamate homeostasis and glutamatergic neurotransmission in the mouse hippocampus. We found that peritoneal inflammation elevated extracellular glutamate concentration and enhanced the probability of pre-synaptic glutamate release resulting in hyperexcitability of neuronal networks. These mechanisms are likely to underlie the enhanced seizure propensity.


Asunto(s)
Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Transmisión Sináptica/fisiología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Hipocampo/efectos de los fármacos , Ácido Kaínico/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Transmisión Sináptica/efectos de los fármacos
14.
J Neurosci Res ; 93(9): 1442-50, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25807926

RESUMEN

Type 1 diabetes is associated with cognitive dysfunction. Cognitive processing, particularly memory acquisition, depends on the regulated enhancement of expression and function of glutamate receptor subtypes in the hippocampus. Impairment of memory was been detected in rodent models of type 1 diabetes induced by streptozotocin (STZ). This study examines the functional properties of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and the expression of synaptic molecules that regulate glutamatergic synaptic transmission in the hippocampus of STZ-diabetic rats. The AMPA receptor-mediated miniature excitatory postsynaptic currents (mEPSCs) and single-channel properties of synaptosomal AMPA receptors were examined after 4 weeks of diabetes induction. Results show that amplitude and frequency of mEPSCs recorded from CA1 pyramidal neurons were decreased in diabetic rats. In addition, the single-channel properties of synaptic AMPA receptors from diabetic rat hippocampi were different from those of controls. These impairments in synaptic currents gated by AMPA receptors were accompanied by decreased protein levels of AMPA receptor subunit GluR1, the presynaptic protein synaptophysin, and the postsynaptic anchor protein postsynaptic density protein 95 in the hippocampus of diabetic rats. Neural cell adhesion molecule (NCAM), an extracellular matrix molecule abundantly expressed in the brain, and the polysialic acid (PSA) attached to NCAM were also downregulated in the hippocampus of diabetic rats. Insulin treatment, when initiated at the onset of diabetes induction, reduced these effects. These findings suggest that STZ-induced diabetes may result in functional deteriorations in glutamatergic synapses in the hippocampus of rats and that these effects may be reduced by insulin treatment.


Asunto(s)
Diabetes Mellitus Experimental/dietoterapia , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Receptores AMPA/metabolismo , Animales , Antibióticos Antineoplásicos/toxicidad , Fenómenos Biofísicos/efectos de los fármacos , Glucemia/efectos de los fármacos , Diabetes Mellitus Experimental/inducido químicamente , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/patología , Técnicas In Vitro , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Ratas , Ratas Wistar , Estreptozocina/toxicidad , Sinaptosomas/metabolismo
15.
Drug Dev Res ; 76(2): 72-81, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25847731

RESUMEN

Mitochondrial dysfunction is a key component of various aging-related pathologies of the brain that result in dementia. As such, it provides an important avenue in development of therapeutic interventions for a host of neurological disorders. A requirement for functional mitochondrial respiratory chain complex I (CI), to accomplish the normal physiological processes regulating memory, seems intuitive. In the present study, a synthetic lipoylcarnitine antioxidant (PMX-500FI; 100 mg/kg/day po) was administered to female ICR mice (3-4-month old) that were subsequently treated with the mitochondrial CI inhibitor, rotenone (400 mg/kg/day). After 1 week, rotenone-induced impairment of neuronal function was evaluated in the hippocampus, a brain region that is involved in regulating memory formation. Electrophysiological recordings in live brain slices showed that long-term potentiation (LTP) was reduced by rotenone exposure (P < 0.05) while pretreatment with PMX-500FI maintained LTP similar to control levels (P > 0.05). Potentiation during theta burst stimulation (TBS) was similar among treatment groups (P > 0.05); however, neurotransmitter release, which increased in control mice after TBS, was lower in rotenone treated mice (P < 0.05), and was accompanied by reduced basal synaptic transmission (P < 0.05), increased proapoptotic signaling and decreased extracellular signal-regulated kinase1/2 (ERK1/2) phosphorylation (P < 0.05). For each of these determinations, pretreatment with PMX-500FI alleviated the harmful effects of rotenone. These results illustrate that treatment with antioxidant PMX-500FI is protective against rotenone-induced impairment of neuronal bioenergetics in the mouse hippocampus, in regard to both excitatory synaptic physiology and proapoptotic signaling. The protective effect of PMX-500FI against rotenone-induced disruption of cellular bioenergetics may have important therapeutic implications for treating aging-related dementia and other diseases related to mitochondrial dysfunction and/or oxidative damage.


Asunto(s)
Antioxidantes/administración & dosificación , Carnitina/análogos & derivados , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Hipocampo/efectos de los fármacos , Rotenona/toxicidad , Ácido Tióctico/análogos & derivados , Animales , Antioxidantes/farmacología , Carnitina/administración & dosificación , Carnitina/farmacología , Fenómenos Electrofisiológicos , Femenino , Hipocampo/fisiopatología , Potenciación a Largo Plazo/efectos de los fármacos , Ratones , Ratones Endogámicos ICR , Modelos Animales , Transducción de Señal/efectos de los fármacos , Ácido Tióctico/administración & dosificación , Ácido Tióctico/farmacología
16.
Cells ; 13(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38994982

RESUMEN

There has been a significant increase in the consumption of cannabis for both recreational and medicinal purposes in recent years, and its use can have long-term consequences on cognitive functions, including memory. Here, we review the immediate and long-term effects of cannabis and its derivatives on glutamatergic neurotransmission, with a focus on both the presynaptic and postsynaptic alterations. Several factors can influence cannabinoid-mediated changes in glutamatergic neurotransmission, including dosage, sex, age, and frequency of use. Acute exposure to cannabis typically inhibits glutamate release, whereas chronic use tends to increase glutamate release. Conversely, the postsynaptic alterations are more complicated than the presynaptic effects, as cannabis can affect the glutamate receptor expression and the downstream signaling of glutamate. All these effects ultimately influence cognitive functions, particularly memory. This review will cover the current research on glutamate-cannabis interactions, as well as the future directions of research needed to understand cannabis-related health effects and neurological and psychological aspects of cannabis use.


Asunto(s)
Cannabinoides , Cannabis , Ácido Glutámico , Transmisión Sináptica , Humanos , Transmisión Sináptica/efectos de los fármacos , Cannabinoides/farmacología , Cannabinoides/metabolismo , Ácido Glutámico/metabolismo , Cannabis/metabolismo , Animales
17.
Neurobiol Learn Mem ; 106: 102-11, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23871741

RESUMEN

Smoking during pregnancy is associated with long lasting, hippocampus dependent, cognitive deficits in children. The current study was performed to investigate the effect of prenatal nicotine exposure on excitatory synaptic physiology and cellular signaling in the hippocampus using a rodent model. Excitatory synaptic physiology was analyzed using electrophysiological methods to detect changes in synaptic plasticity, excitatory synaptic transmission and synaptic currents mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in the hippocampus. Additionally, western blot experiments were performed to quantify alterations in protein expression levels in the hippocampus. Prenatal nicotine exposure resulted in a decrease in long term potentiation (LTP) and an increase in long term depression (LTD). Basal synaptic transmission was also reduced with a concomitant decline in AMPAR mediated synaptic currents at the cellular and single channel levels. Presynaptic pool of vesicles docked close to release sites were also diminished in nicotine exposed rats. Moreover, reduced levels of ß2 subunit containing nicotinic receptors and extracellular signal regulated kinase1/2 (ERK1/2) were observed in nicotine exposed rats. These results suggest that long lasting alterations in excitatory synaptic physiology, AMPAR synaptic currents and ERK1/2 signaling may serve as the molecular mechanisms for cognitive deficits associated with prenatal nicotine exposure.


Asunto(s)
Hipocampo/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Nicotina/farmacología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Receptores Nicotínicos/metabolismo , Sinapsis/efectos de los fármacos , Animales , Femenino , Hipocampo/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Plasticidad Neuronal/fisiología , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
18.
Synapse ; 67(11): 741-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23620198

RESUMEN

Phosphodiesterases (PDEs) belong to a family of proteins that control metabolism of cyclic nucleotides. Targeting PDE5, for enhancing cellular function, is one of the therapeutic strategies for male erectile dysfunction. We have investigated whether in vivo inhibition of PDE5, which is expressed in several brain regions, will enhance memory and synaptic transmission in the hippocampus of healthy mice. We have found that acute administration of sildenafil, a specific PDE5 inhibitor, enhanced hippocampus-dependent memory tasks. To elucidate the underlying mechanism in the memory enhancement, effects of sildenafil on long-term potentiation (LTP) were measured. The level of LTP was significantly elevated, with concomitant increases in basal synaptic transmission, in mice treated with sildenafil (1 mg/kg/day) for 15 days compared to control mice. These results suggest that moderate PDE5 inhibition enhances memory by increasing synaptic plasticity and transmission in the hippocampus.


Asunto(s)
Potenciación a Largo Plazo/efectos de los fármacos , Memoria/efectos de los fármacos , Inhibidores de Fosfodiesterasa 5/farmacología , Piperazinas/farmacología , Sulfonas/farmacología , Animales , Potenciales Postsinápticos Excitadores , Hipocampo/citología , Hipocampo/fisiología , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Purinas/farmacología , Citrato de Sildenafil
19.
Neurochem Res ; 38(10): 2084-94, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23918203

RESUMEN

Methamphetamine epidemic has a broad impact on world's health care system. Its abusive potential and neurotoxic effects remain a challenge for the anti-addiction therapies. In addition to oxidative stress, mitochondrial dysfunction and apoptosis, excitotoxicity is also involved in methamphetamine induced neurotoxicity. The N-methyl-D-aspartate (NMDA) type of glutamate receptor is thought to be one of the predominant mediators of excitotoxicity. There is growing evidence that NMDA receptor antagonists could be one of the therapeutic options to manage excitotoxicity. Amantadine, a well-tolerated and modestly effective antiparkinsonian agent, was found to possess NMDA antagonistic properties and has shown to release dopamine from the nerve terminals. The current study aimed to evaluate the effect of amantadine pre-treatment against methamphetamine induced neurotoxicity. Results showed that methamphetamine treatment had depleted striatal dopamine, generated of reactive oxygen species and decreased activity of complex I in the mitochondria. Interestingly, amantadine, at high dose (10 mg/kg), did not prevent dopamine depletion moreover it exacerbated the behavioral manifestations of methamphetamine toxicity such as akinesia and catalepsy. Only lower dose of amantadine (1 mg/kg) produced significant scavenging of the reactive oxygen species induced by methamphetamine. Overall results from the present study suggest that amantadine should not be used concomitantly with methamphetamine as it may results in excessive neurotoxicity.


Asunto(s)
Amantadina/uso terapéutico , Metanfetamina/envenenamiento , Síndromes de Neurotoxicidad/tratamiento farmacológico , Animales , Conducta Animal/efectos de los fármacos , Catalepsia/inducido químicamente , Dopamina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedades Mitocondriales/inducido químicamente , Neostriado/efectos de los fármacos , Neostriado/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Serotonina/metabolismo , Superóxido Dismutasa/metabolismo
20.
Cell Mol Life Sci ; 69(5): 829-41, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22033836

RESUMEN

In the developing brain, nicotinic acetylcholine receptors (nAChRs) are involved in cell survival, targeting, formation of neural and sensory circuits, and development and maturation of other neurotransmitter systems. This regulatory role is disrupted when the developing brain is exposed to nicotine, which occurs with tobacco use during pregnancy. Prenatal nicotine exposure has been shown to be a strong risk factor for memory deficits and other behavioral aberrations in the offspring. The molecular mechanisms underlying these neurobehavioral outcomes are not clearly elucidated. We used a rodent model to assess behavioral, neurophysiological, and neurochemical consequences of prenatal nicotine exposure in rat offspring with specific emphasis on the hippocampal glutamatergic system. Pregnant dams were infused with nicotine (6 mg/kg/day) subcutaneously from the third day of pregnancy until birth. Results indicate that prenatal nicotine exposure leads to increased anxiety and depressive-like effects and impaired spatial memory. Synaptic plasticity in the form of long-term potentiation (LTP), basal synaptic transmission, and AMPA receptor-mediated synaptic currents were reduced. The deficit in synaptic plasticity was paralleled by declines in protein levels of vesicular glutamate transporter 1 (VGLUT1), synaptophysin, AMPA receptor subunit GluR1, phospho(Ser845) GluR1, and postsynaptic density 95 (PSD-95). These results suggest that prenatal nicotine exposure by maternal smoking could result in alterations in the glutamatergic system in the hippocampus contributing to the abnormal neurobehavioral outcomes.


Asunto(s)
Conducta Animal/efectos de los fármacos , Hipocampo/efectos de los fármacos , Nicotina/toxicidad , Receptores de Glutamato/metabolismo , Animales , Electrofisiología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA