Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(8)2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33920291

RESUMEN

In previously reported experimental studies, a yield of double-walled carbon nanotubes (DWCNTs) at C70@Single-walled carbon nanotubes (SWCNTs) is higher than C60@SWCNTs due to the higher sensitivity to photolysis of the former. From the perspective of pyrolysis dynamics, we would like to understand whether C70@SWCNT is more sensitive to thermal decomposition than C60@SWCNT, and the starting point of DWCNT formation, which can be obtained through the decomposition fragmentation of the nanopeapods, which appears in the early stages. We have studied the fragmentation of C70@SWCNT nanopeapods, using molecular dynamics simulations together with the empirical tight-binding total energy calculation method. We got the snapshots of the fragmentation structure of carbon nano-peapods (CNPs) composed of SWCNT and C70 fullerene molecules and the geometric spatial positioning structure of C70 within the SWCNT as a function of dynamics time (for 2 picoseconds) at the temperatures of 4000 K, 5000 K, and 6000 K. In conclusion, the scenario in which C70@SWCNT transforms to a DWCNT would be followed by the fragmentation of C70, after C70, and the SWCNT have been chemically bonding in the early stages. The relative stability of fullerenes in CNPs could be reversed, compared to the ranking of the relative stability of the encapsulated molecules themselves.


Asunto(s)
Ácidos Carboxílicos/química , Fulerenos/química , Nanotubos de Carbono/química , Fenómenos Biofísicos , Simulación de Dinámica Molecular
2.
Nanomaterials (Basel) ; 11(11)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34835759

RESUMEN

In this study, the B3LYP hybrid density functional theory was used to investigate the electromechanical characteristics of C70 fullerene with and without point charges to model the effect of the surface of the gate electrode in a C70 single-electron transistor (SET). To understand electron tunneling through C70 fullerene species in a single-C70 transistor, descriptors of geometrical atomic structures and frontier molecular orbitals were analyzed. The findings regarding the node planes of the lowest unoccupied molecular orbitals (LUMOs) of C70 and both the highest occupied molecular orbitals (HOMOs) and the LUMO of the C70 anion suggest that electron tunneling of pristine C70 prolate spheroidal fullerene could be better in the major axis orientation when facing the gate electrode than in the major (longer) axis orientation when facing the Au source and drain electrodes. In addition, we explored the effect on the geometrical atomic structure of C70 by a single-electron addition, in which the maximum change for the distance between two carbon sites of C70 is 0.02 Å.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA