Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Chem Mater ; 36(10): 5257-5263, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38828188

RESUMEN

Gamma sensitive plastic scintillators are of critical importance in the fields of nuclear nonproliferation, medical imaging, and high energy physics. However, there is often a trade-off between high light yield and high loading of high-Z components, both of which play an essential role in gamma ray detection. This work takes advantage of triplet exciton harvesting to increase gamma light yield by utilizing 1,3-di(9H-carbazol-9-yl)benzene and 9,9-dimethyl-9H-fluorene as triplet hosts to facilitate Dexter energy transfer to bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III) (FIrPic), a blue light emitting phosphorescent dye. A plastic scintillator containing 20 wt % MF, 10 wt % mCP, and 2 wt % FIrPic has a high gamma light yield of 14 800 Ph/MeV. Incorporating 20-35 wt % hafnium oxide nanoparticles into this organic matrix results in nanocomposites that demonstrate a gamma photopeak energy resolution of 6.4-9.7% at 662 keV while still retaining a high gamma light yield between 8800 and 10 800 Ph/MeV.

2.
J Biomater Sci Polym Ed ; 34(7): 893-917, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36369719

RESUMEN

There has been a lack of research for developing functional polymer composites for biomedical implants. Even though metals are widely used as implant materials, there is a need for developing polymer composites as implant materials because of the stress shielding effect that causes a lack of compatibility of metals with the human body. This review aims to bring out the latest developments in polymer composite materials for body implants and to emphasize the significance of polymer composites as a viable alternative to conventional materials used in the biomedical industry for ease of life. This review article explores the developments in functional polymer composites for biomedical applications and provides distinct divisions for their applications based on the part of the body where they are implanted. Each application has been covered in some detail. The various applications covered are bone transplants and bone regeneration, cardiovascular implants (stents), dental implants and restorative materials, neurological and spinal implants, and tendon and ligament replacement.


Asunto(s)
Polímeros , Stents , Humanos , Regeneración Ósea , Materiales Dentales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA