RESUMEN
BACKGROUND & AIMS: There is growing interest in the use of bone marrow cells to treat liver fibrosis, however, little is known about their antifibrotic efficacy or the identity of their effector cell(s). Sphingosine-1-phosphate (S1P) mediates egress of immune cells from the lymphoid organs into the lymphatic vessels; we investigated its role in the response of hematopoietic stem cells (HSCs) to liver fibrosis in mice. METHODS: Purified (c-kit+/sca1+/lin-) HSCs were infused repeatedly into mice undergoing fibrotic liver injury. Chronic liver injury was induced in BoyJ mice by injection of carbon tetrachloride (CCl4) or placement on a methionine-choline-deficient diet. Some mice were irradiated and given transplants of bone marrow cells from C57BL6 mice, with or without the S1P antagonist FTY720; we then studied HSC mobilization and localization. Migration of HSC lines was quantified in Transwell assays. Levels of S1P in liver, bone marrow, and lymph fluid were measured using an enzyme-linked immunosorbent assay. Liver tissues were collected and analyzed by immunohistochemical quantitative polymerase chain reaction and sphingosine kinase activity assays. We performed quantitative polymerase chain reaction analyses of the expression of sphingosine kinase 1 and 2, sphingosine-1-phosphate lyase 1, and sphingosine-1-phosphate phosphatase 1 in normal human liver and cirrhotic liver from patients with alcohol-related liver disease (n = 6). RESULTS: Infusions of HSCs into mice with liver injury reduced liver scarring based on picrosirius red staining (49.7% reduction in mice given HSCs vs control mice; P < .001), and hepatic hydroxyproline content (328 mg/g in mice given HSCs vs 428 mg/g in control mice; P < .01). HSC infusion also reduced hepatic expression of α-smooth muscle actin (0.19 ± 0.007-fold compared with controls; P < .0001) and collagen type I α 1 chain (0.29 ± 0.17-fold compared with controls; P < .0001). These antifibrotic effects were maintained with infusion of lymphoid progenitors that lack myeloid potential and were associated with increased numbers of recipient neutrophils and macrophages in liver. In studies of HSC cell lines, we found HSCs to recruit monocytes, and this process to require C-C motif chemokine receptor 2. In fibrotic liver tissue from mice and patients, hepatic S1P levels increased owing to increased hepatic sphingosine kinase-1 expression, which contributed to a reduced liver:lymph S1P gradient and limited HSC egress from the liver. Mice given the S1P antagonist (FTY720) with HSCs had increased hepatic retention of HSCs (1697 ± 247 cells in mice given FTY720 vs 982 ± 110 cells in controls; P < .05), and further reductions in fibrosis. CONCLUSIONS: In studies of mice with chronic liver injury, we showed the antifibrotic effects of repeated infusions of purified HSCs. We found that HSCs promote recruitment of endogenous macrophages and neutrophils. Strategies to reduce SIP signaling and increase retention of HSCs in the liver could increase their antifibrotic activities and be developed for treatment of patients with liver fibrosis.
Asunto(s)
Movimiento Celular/efectos de los fármacos , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/fisiología , Cirrosis Hepática/prevención & control , Lisofosfolípidos/antagonistas & inhibidores , Lisofosfolípidos/metabolismo , Esfingosina/análogos & derivados , Actinas/metabolismo , Aldehído-Liasas/genética , Animales , Línea Celular , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/complicaciones , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Femenino , Clorhidrato de Fingolimod/uso terapéutico , Expresión Génica , Humanos , Inmunosupresores/uso terapéutico , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/etiología , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Linfa/metabolismo , Macrófagos , Masculino , Proteínas de la Membrana/genética , Ratones , Monocitos , Neutrófilos , Monoéster Fosfórico Hidrolasas/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Esfingosina/antagonistas & inhibidores , Esfingosina/metabolismoRESUMEN
Mesenchymal stem cells (MSCs) have shown therapeutic promise in many experimental and clinical models of inflammation. However, a commonly reported feature of MSC transplantation is poor homing to injured tissues. Previously, we have shown that pretreatment with cytokines/chemical factors enhances hematopoietic SC adhesion within intestinal microvasculature following ischemia-reperfusion (IR) injury. Using intravital microscopy, the ability of similar pretreatment strategies to enhance the recruitment of murine MSCs to murine intestinal microvasculature following IR injury was investigated. Primary MSCs were isolated from bone marrow and selected on the basis of platelet-derived growth factor receptor-α and SC antigen-1 positivity (PDGFRα(+) /Sca-1(+) ). MSC recruitment was similar in IR injured gut mucosa when compared with sham operated controls, with limited cell adhesion observed. MSCs appeared contorted in microvessels, suggesting physical entrapment. Although not recruited specifically by injury, MSC administration significantly reduced neutrophil recruitment and improved tissue perfusion in the severely injured jejunum. Vasculoprotective effects were not demonstrated in the lesser injured ileum. Pretreatment of MSCs with tumor necrosis factor (TNF)-α, CXCL12, interferon (IFN)-γ, or hydrogen peroxide did not enhance their intestinal recruitment. In fact, TNFα and IFNγ removed the previous therapeutic ability of transplanted MSCs to reduce neutrophil infiltration and improve perfusion in the jejunum. We provide direct evidence that MSCs can rapidly limit leukocyte recruitment and improve tissue perfusion following intestinal IR injury. However, this study also highlights complexities associated with strategies to improve MSC therapeutic efficacy. Future studies using cytokine/chemical pretreatments to enhance MSC recruitment/function require careful consideration and validation to ensure therapeutic function is not impeded.
Asunto(s)
Movimiento Celular/fisiología , Íleon/irrigación sanguínea , Íleon/lesiones , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/fisiología , Daño por Reperfusión/prevención & control , Animales , Movimiento Celular/efectos de los fármacos , Citocinas/metabolismo , Citocinas/farmacología , Íleon/metabolismo , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Daño por Reperfusión/metabolismoRESUMEN
BACKGROUND & AIMS: T-cell-mediated biliary injury is a feature of primary sclerosing cholangitis (PSC). We studied the roles of CD28(-) T cells in PSC and their regulation by vitamin D. METHODS: Peripheral and liver-infiltrating mononuclear cells were isolated from blood or fresh liver tissue. We analyzed numbers, phenotypes, functions, and localization patterns of CD28(-) T cells, along with their ability to activate biliary epithelial cells. We measured levels of tumor necrosis factor (TNF)α in liver tissues from patients with PSC and the effects of exposure to active vitamin D (1,25[OH]2D3) on expression of CD28. RESULTS: A significantly greater proportion of CD4(+) and CD8(+) T cells that infiltrated liver tissues of patients with PSC were CD28(-), compared with control liver tissue (CD4(+): 30.3% vs 2.5%, P < .0001; and CD8(+): 68.5% vs 31.9%, P < .05). The mean percentage of CD4(+)CD28(-) T cells in liver tissues from patients with PSC was significantly higher than from patients with primary biliary cirrhosis or nonalcoholic steatohepatitis (P < .05). CD28(-) T cells were activated CD69(+)CD45RA(-) C-C chemokine receptor (CCR)7(-) effector memory and perforin(+) granzyme B(+) cytotoxic cells, which express CD11a, CX3CR1, C-X3-C motif receptor 6 (CXCR6), and CCR10-consistent with their infiltration of liver and localization around bile ducts. Compared with CD28(+) T cells, activated CD28(-) T cells produced significantly higher levels of interferon γ and TNFα (P < .05), and induced up-regulation of intercellular cell adhesion molecule-1, HLA-DR, and CD40 by primary epithelial cells (3.6-fold, 1.5-fold, and 1.2-fold, respectively). Liver tissue from patients with PSC contained high levels of TNFα; TNFα down-regulated the expression of CD28 by T cells in vitro (P < .01); this effect was prevented by administration of 1,25(OH)2D3 (P < .05). CONCLUSIONS: Inflammatory CD28(-) T cells accumulate in livers of patients with PSC and localize around bile ducts. The TNFα-rich microenvironment of this tissue promotes inflammation; these effects are reversed by vitamin D in vitro.
Asunto(s)
Antígenos CD28/deficiencia , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Colangitis Esclerosante/etiología , Hígado/metabolismo , Antígenos CD28/metabolismo , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/patología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Colangitis Esclerosante/metabolismo , Colangitis Esclerosante/patología , Citocinas/metabolismo , Humanos , Técnicas In Vitro , Interferón gamma/metabolismo , Hígado/patología , Factor de Necrosis Tumoral alfa/metabolismo , Vitamina D/farmacologíaRESUMEN
UNLABELLED: Liver fibrosis is a wound healing response to chronic liver injury and inflammation in which macrophages and infiltrating monocytes participate in both the development and resolution phase. In humans, three monocyte subsets have been identified: the classical CD14++CD16-, intermediate CD14++CD16+, and nonclassical CD14+CD16++ monocytes. We studied the phenotype and function of these monocyte subsets in peripheral blood and liver tissue from patients with chronic inflammatory and fibrotic liver diseases. The frequency of intrahepatic monocytes increased in disease compared with control liver tissue, and in both nondiseased and diseased livers there was a higher frequency of CD14++CD16+ cells with blood. Our data suggest two nonexclusive mechanisms of CD14++CD16+ accumulation in the inflamed liver: (1) recruitment from blood, because more than twice as many CD14++CD16+ monocytes underwent transendothelial migration through hepatic endothelial cells compared with CD14++CD16- cells; and (2) local differentiation from CD14++CD16- classical monocytes in response to transforming growth factor ß and interleukin (IL)-10. Intrahepatic CD14++CD16+ cells expressed both macrophage and dendritic cell markers but showed high levels of phagocytic activity, antigen presentation, and T cell proliferation and secreted proinflammatory (tumor necrosis factor α, IL-6, IL-8, IL-1ß) and profibrogenic cytokines (IL-13), chemokines (CCL1, CCL2, CCL3, CCL5), and growth factors (granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor), consistent with a role in the wound healing response. CONCLUSION: Intermediate CD14++CD16+ monocytes preferentially accumulate in chronically inflamed human liver as a consequence of enhanced recruitment from blood and local differentiation from classical CD14++CD16- monocytes. Their phagocytic potential and ability to secrete inflammatory and profibrogenic cytokines suggests they play an important role in hepatic fibrogenesis.
Asunto(s)
Hepatopatías/inmunología , Monocitos/patología , Citocinas/metabolismo , Proteínas Ligadas a GPI/metabolismo , Humanos , Receptores de Lipopolisacáridos/metabolismo , Cirrosis Hepática/inmunología , Monocitos/fisiología , Fenotipo , Receptores de IgG/metabolismoRESUMEN
BACKGROUND AIMS: Human bone marrow-derived mesenchymal stromal cells (MSC) can suppress inflammation; therefore their therapeutic potential is being explored in clinical trials. Poor engraftment of infused MSC limits their therapeutic utility; this may be caused by MSC processing before infusion, in particular the method of their detachment from culture. METHODS: Enzymatic methods of detaching MSC (Accutase and TrypLE) were compared with non-enzymatic methods (Cell Dissociation Buffer [CDB], ethylenediamine tetra-acetic acid and scraping) for their effect on MSC viability, chemokine receptor expression, multi-potency, immunomodulation and chemokine-dependent migration. RESULTS: TrypLE detachment preserved MSC viability and tri-lineage potential compared with non-enzymatic methods; however, this resulted in near complete loss of surface chemokine receptor expression. Of the non-enzymatic methods, CDB detachment preserved the highest viability while retaining significant tri-lineage differentiation potential. Once re-plated, CDB-detached MSC regained their original morphology and reached confluence, unlike with the use of other non-enzymatic methods. Viability was significantly reduced with the use of ethylenediamine tetra-acetic acid and further reduced with the use of cell scraping. Addition of 1% serum during CDB detachment led to higher MSC numbers entering autophagy and increased MSC recovery after re-plating. TrypLE and CDB-detached MSC suppressed CD3(+)CD4(+)CD25(-) T-cell proliferation, although TrypLE-detached MSC exhibited superior suppression at 1:20 ratio. CDB detachment retained surface chemokine receptor expression and consequently increased migration to CCL22, CXCL12 and CCL4, in contrast with TrypLE-detached MSC. CONCLUSIONS: This study demonstrates that non-enzymatic detachment of MSC with the use of CDB minimizes the negative impact on cell viability, multipotency and immunomodulation while retaining chemokine-dependent migration, which may be of importance in MSC delivery and engraftment in sites of injury.