Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Physiol Endocrinol Metab ; 324(4): E299-E313, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36791321

RESUMEN

Metabolic and molecular interactions between branched-chain amino acid (BCAA) and lipid metabolism are evident in insulin-resistant tissues. However, it remains unclear whether insulin resistance is a prerequisite for these relationships and whether BCAAs or their metabolic intermediates can modulate hepatic lipid oxidation and synthesis. We hypothesized that BCAAs can alter hepatic oxidative function and de novo lipogenesis, independent of them being anaplerotic substrates for the mitochondria. Mice (C57BL/6NJ) were reared on a low-fat (LF), LF diet plus 1.5X BCAAs (LB), high-fat (HF) or HF diet plus 1.5X BCAAs (HB) for 12 wk. Hepatic metabolism was profiled utilizing stable isotopes coupled to mass spectrometry and nuclear magnetic resonance, together with fed-to-fasted changes in gene and protein expression. A greater induction of lipid oxidation and ketogenesis on fasting was evident in the BCAA-supplemented, insulin-sensitive livers from LB mice, whereas their rates of hepatic de novo lipogenesis remained lower than their LF counterparts. Onset of insulin resistance in HF and HB mice livers blunted these responses. Whole body turnover of BCAAs and their ketoacids, their serum concentrations, and the ketogenic flux from BCAA catabolism, all remained similar between fasted LF and LB mice. This suggested that the impact of BCAAs on lipid metabolism can occur independent of them or their degradation products fueling anaplerosis through the liver mitochondria. Furthermore, the greater induction of lipid oxidation in the LB livers accompanied higher mitochondrial NADH/NAD+ ratio and higher fed-to-fasting phosphorylation of AMPKα and ACC. Taken together, our results provide evidence that BCAA supplementation, under conditions of insulin sensitivity, improved the feeding-to-fasting induction of hepatic lipid oxidation through changes in cellular redox, thus providing a favorable biochemical environment for flux through ß-oxidation and lower de novo lipogenesis.NEW & NOTEWORTHY Branched-chain amino acids (BCAAs) have been shown to modulate lipid metabolic networks in various tissues, especially during insulin resistance. In this study we show that the dietary supplementation of BCAAs to normal, insulin-sensitive mice resulted in higher mitochondrial NADH:NAD+ ratios and AMPK activation in the liver. This change in the cellular redox status provided an optimal metabolic milieu to increase fatty acid oxidation while keeping the rates of de novo lipogenesis lower in the BCAA-supplemented mice livers.


Asunto(s)
Resistencia a la Insulina , Lipogénesis , Ratones , Animales , Aminoácidos de Cadena Ramificada/metabolismo , NAD/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Metabolismo de los Lípidos , Insulina/metabolismo , Oxidación-Reducción , Lípidos
2.
FASEB J ; 34(11): 14832-14849, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32918763

RESUMEN

Mitochondrial adaptation during non-alcoholic fatty liver disease (NAFLD) include remodeling of ketogenic flux and sustained tricarboxylic acid (TCA) cycle activity, which are concurrent to onset of oxidative stress. Over 70% of obese humans have NAFLD and ketogenic diets are common weight loss strategies. However, the effectiveness of ketogenic diets toward alleviating NAFLD remains unclear. We hypothesized that chronic ketogenesis will worsen metabolic dysfunction and oxidative stress during NAFLD. Mice (C57BL/6) were kept (for 16-wks) on either a low-fat, high-fat, or high-fat diet supplemented with 1.5X branched chain amino acids (BCAAs) by replacing carbohydrate calories (ketogenic). The ketogenic diet induced hepatic lipid oxidation and ketogenesis, and produced multifaceted changes in flux through the individual steps of the TCA cycle. Higher rates of hepatic oxidative fluxes fueled by the ketogenic diet paralleled lower rates of de novo lipogenesis. Interestingly, this metabolic remodeling did not improve insulin resistance, but induced fibrogenic genes and inflammation in the liver. Under a chronic "ketogenic environment," the hepatocyte diverted more acetyl-CoA away from lipogenesis toward ketogenesis and TCA cycle, a milieu which can hasten oxidative stress and inflammation. In summary, chronic exposure to ketogenic environment during obesity and NAFLD has the potential to aggravate hepatic mitochondrial dysfunction.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Dieta Cetogénica/efectos adversos , Hígado/metabolismo , Mitocondrias Hepáticas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Estrés Oxidativo , Animales , Metabolismo de los Hidratos de Carbono , Ciclo del Ácido Cítrico , Lipogénesis , Masculino , Ratones , Ratones Endogámicos C57BL
3.
Chem Res Toxicol ; 29(5): 933-9, 2016 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-27082015

RESUMEN

Mitomycin C (MC) is a cytotoxic and mutagenic antitumor agent that alkylates DNA upon reductive activation. 2,7-Diaminomitosene (2,7-DAM) is a major metabolite of MC in tumor cells, which also alkylates DNA. MC forms seven DNA adducts, including monoadducts and inter- and intrastrand cross-links, whereas 2,7-DAM forms two monoadducts. Herein, the biological effects of the dG-N(2) adducts formed by MC and 2,7-DAM have been compared by constructing single-stranded plasmids containing these adducts and replicating them in human embryonic kidney 293T cells. Translesion synthesis (TLS) efficiencies of dG-N(2)-MC and dG-N(2)-2,7-DAM were 38 ± 3 and 27 ± 3%, respectively, compared to that of a control plasmid. This indicates that both adducts block DNA synthesis and that dG-N(2)-2,7-DAM is a stronger replication block than dG-N(2)-MC. TLS of each adducted construct was reduced upon siRNA knockdown of pol η, pol κ, or pol ζ. For both adducts, the most significant reduction occurred with knockdown of pol κ, which suggests that pol κ plays a major role in TLS of these dG-N(2) adducts. Analysis of the progeny showed that both adducts were mutagenic, and the mutation frequencies (MF) of dG-N(2)-MC and dG-N(2)-2,7-DAM were 18 ± 3 and 10 ± 1%, respectively. For both adducts, the major type of mutation was G → T transversions. Knockdown of pol η and pol ζ reduced the MF of dG-N(2)-MC and dG-N(2)-2,7-DAM, whereas knockdown of pol κ increased the MF of these adducts. This suggests that pol κ predominantly carries out error-free TLS, whereas pol η and pol ζ are involved in error-prone TLS. The largest reduction in MF by 78 and 80%, respectively, for dG-N(2)-MC and dG-N(2)-2,7-DAM constructs occurred when pol η, pol ζ, and Rev1 were simultaneously knocked down. This result strongly suggests that, unlike pol κ, these three TLS polymerases cooperatively perform the error-prone TLS of these adducts.


Asunto(s)
Desoxiguanosina/química , Mitomicina/química , Mitomicinas/química , Células HEK293 , Humanos
4.
Front Physiol ; 13: 870451, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35530509

RESUMEN

Embryonic-to-neonatal development in chicken is characterized by high rates of lipid oxidation in the late-term embryonic liver and high rates of de novo lipogenesis in the neonatal liver. This rapid remodeling of hepatic mitochondrial and cytoplasmic networks occurs without symptoms of hepatocellular stress. Our objective was to characterize the metabolic phenotype of the embryonic and neonatal liver and explore whether these metabolic signatures are preserved in primary cultured hepatocytes. Plasma and liver metabolites were profiled using mass spectrometry based metabolomics on embryonic day 18 (ed18) and neonatal day 3 (nd3). Hepatocytes from ed18 and nd3 were isolated and cultured, and treated with insulin, glucagon, growth hormone and corticosterone to define hormonal responsiveness and determine their impacts on mitochondrial metabolism and lipogenesis. Metabolic profiling illustrated the clear transition from the embryonic liver relying on lipid oxidation to the neonatal liver upregulating de novo lipogenesis. This metabolic phenotype was conserved in the isolated hepatocytes from the embryos and the neonates. Cultured hepatocytes from the neonatal liver also maintained a robust response to insulin and glucagon, as evidenced by their contradictory effects on lipid oxidation and lipogenesis. In summary, primary hepatocytes from the embryonic and neonatal chicken could be a valuable tool to investigate mechanisms regulating hepatic mitochondrial metabolism and de novo lipogenesis.

5.
Metabolites ; 11(5)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33926132

RESUMEN

Diets rich in fats and carbohydrates aggravate non-alcoholic fatty liver disease (NAFLD), of which mitochondrial dysfunction is a central feature. It is not clear whether a high-carbohydrate driven 'lipogenic' diet differentially affects mitochondrial oxidative remodeling compared to a high-fat driven 'oxidative' environment. We hypothesized that the high-fat driven 'oxidative' environment will chronically sustain mitochondrial oxidative function, hastening metabolic dysfunction during NAFLD. Mice (C57BL/6NJ) were reared on a low-fat (LF; 10% fat calories), high-fat (HF; 60% fat calories), or high-fructose/high-fat (HFr/HF; 25% fat and 34.9% fructose calories) diet for 10 weeks. De novo lipogenesis was determined by measuring the incorporation of deuterium from D2O into newly synthesized liver lipids using nuclear magnetic resonance (NMR) spectroscopy. Hepatic mitochondrial metabolism was profiled under fed and fasted states by the incubation of isolated mitochondria with [13C3]pyruvate, targeted metabolomics of tricarboxylic acid (TCA) cycle intermediates, estimates of oxidative phosphorylation (OXPHOS), and hepatic gene and protein expression. De novo lipogenesis was higher in the HFr/HF mice compared to their HF counterparts. Contrary to our expectations, hepatic oxidative function after fasting was induced in the HFr/HF group. This differential induction of mitochondrial oxidative function by the high fructose-driven 'lipogenic' environment could influence the progressive severity of hepatic insulin resistance.

6.
Sci Rep ; 9(1): 20167, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882889

RESUMEN

During the normal embryonic-to-neonatal development, the chicken liver is subjected to intense lipid burden from high rates of yolk-lipid oxidation and also from the accumulation of the yolk-derived and newly synthesized lipids from carbohydrates. High rates of hepatic lipid oxidation and lipogenesis are also central features of non-alcoholic fatty liver disease (NAFLD) in both rodents and humans, but is associated with impaired insulin signaling, dysfunctional mitochondrial energetics and oxidative stress. However, these adverse effects are not apparent in the liver of embryonic and neonatal chicken, despite lipid burden. Utilizing comprehensive metabolic profiling, we identify that steady induction of hepatic mitochondrial tricarboxylic acid (TCA) cycle and lipogenesis are central features of embryonic-to-neonatal transition. More importantly, the induction of TCA cycle and lipogenesis occurred together with the downregulation of hepatic ß-oxidation and ketogenesis in the neonatal chicken. This synergistic remodeling of hepatic metabolic networks blunted inflammatory onset, prevented accumulation of lipotoxic intermediates (ceramides and diacylglycerols) and reduced reactive oxygen species production during embryonic-to-neonatal development. This dynamic remodeling of hepatic mitochondrial oxidative flux and lipogenesis aids in the healthy embryonic-to-neonatal transition in chicken. This natural physiological system could help identify mechanisms regulating mitochondrial function and lipogenesis, with potential implications towards treatment of NAFLD.


Asunto(s)
Desarrollo Embrionario , Metabolismo Energético , Lipogénesis , Mitocondrias Hepáticas/metabolismo , Oxidación-Reducción , Animales , Respiración de la Célula , Ciclo del Ácido Cítrico , Insulina/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/metabolismo , Redes y Vías Metabólicas , Modelos Biológicos , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA