Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Pharm ; 18(12): 4437-4447, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34783573

RESUMEN

The incorporation of non-covalent albumin binding moieties (ABMs) into radiotracers results in increased circulation time, leading to a higher uptake in the target tissues such as the tumor, and, in some cases, reduced kidney retention. We previously developed [18F]AlF NOTA-K(ABM)-αvß6-BP, where αvß6-BP is a peptide with high affinity for the cell surface receptor integrin αvß6 that is overexpressed in several cancers, and the ABM is an iodophenyl-based moiety. [18F]AlF NOTA-K(ABM)-αvß6-BP demonstrated prolonged blood circulation compared to the non-ABM parent peptide, resulting in high, αvß6-targeted uptake with continuously improving detection of αvß6(+) tumors using PET/CT. To further extend the imaging window beyond that of fluorine-18 (t1/2 = 110 min) and to investigate the pharmacokinetics at later time points, we radiolabeled the αvß6-BP with copper-64 (t1/2 = 12.7 h). Two peptides were synthesized without (1) and with (2) the ABM and radiolabeled with copper-64 to yield [64Cu]1 and [64Cu]2, respectively. The affinity of [natCu]1 and [natCu]2 for the integrin αvß6 was assessed by enzyme-linked immunosorbent assay. [64Cu]1 and [64Cu]2 were evaluated in vitro (cell binding and internalization) using DX3puroß6 (αvß6(+)), DX3puro (αvß6(-)), and pancreatic BxPC-3 (αvß6(+)) cells, in an albumin binding assay, and for stability in both mouse and human serum. In vivo (PET/CT imaging) and biodistribution studies were done in mouse models bearing either the paired DX3puroß6/DX3puro or BxPC-3 xenograft tumors. [64Cu]1 and [64Cu]2 were synthesized in ≥97% radiochemical purity. In vitro, [natCu]1 and [natCu]2 maintained low nanomolar affinity for integrin αvß6 (IC50 = 28 ± 3 and 19 ± 5 nM, respectively); [64Cu]1 and [64Cu]2 showed comparable binding to αvß6(+) cells (DX3puroß6: ≥70%, ≥42% internalized; BxPC-3: ≥19%, ≥12% internalized) and ≤3% to the αvß6(-) DX3puro cells. Both radiotracers were ≥98% stable in human serum at 24 h, and [64Cu]2 showed a 6-fold higher binding to human serum protein than [64Cu]1. In vivo, selective uptake in the αvß6(+) tumors was observed with tumor visualization up to 72 h for [64Cu]2. A 3-5-fold higher αvß6(+) tumor uptake of [64Cu]2 vs [64Cu]1 was observed throughout, at least 2.7-fold improved BxPC-3-to-kidney and BxPC-3-to-blood ratios, and 2-fold improved BxPC-3-to-stomach ratios were noted for [64Cu]2 at 48 h. Incorporation of an iodophenyl-based ABM into the αvß6-BP ([64Cu]2) prolonged circulation time and resulted in improved pharmacokinetics, including increased uptake in αvß6(+) tumors that enabled visualization of αvß6(+) tumors up to 72 h by PET/CT imaging.


Asunto(s)
Albúminas/metabolismo , Antígenos de Neoplasias/metabolismo , Radioisótopos de Cobre/farmacocinética , Integrinas/metabolismo , Neoplasias Experimentales/diagnóstico por imagen , Péptidos/metabolismo , Radiofármacos/farmacocinética , Animales , Autorradiografía , Línea Celular Tumoral , Femenino , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones , Distribución Tisular
2.
Molecules ; 24(2)2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30654483

RESUMEN

The current translation of peptides identified through the one-bead one-compound (OBOC) technology into positron emission tomography (PET) imaging agents is a slow process, with a major delay between ligand identification and subsequent lead optimization. This work aims to streamline the development process of 18F-peptide based PET imaging agents to target the integrin αvß6. By directly identify αvß6⁻targeting peptides from a 9-mer 4-fluorobenzoyl peptide library using the on-bead two-color (OBTC) cell-screening assay, a total of 185 peptide beads were identified and 5 beads sequenced for further evaluation. The lead peptide 1 (VGDLTYLKK(FB), IC50 = 0.45 ± 0.06 µM, 25% stable in serum at 1 h) was further modified at the N-, C-, and bi-termini. C-terminal PEGylation increased the metabolic stability (>95% stable), but decreased binding affinity (IC50 = 3.7 ± 1 µM) was noted. C-terminal extension (1i, VGDLTYLKK(FB)KVART) significantly increased binding affinity for integrin αvß6 (IC50 = 0.021 ± 0.002 µM), binding selectivity for αvß6-expressing cells (3.1 ± 0.8:1), and the serum stability (>99% stable). Our results demonstrate the challenges in optimizing OBOC-derived peptides, indicate both termini of 1 are sensitive to modifications, and show that further modification of 1 is necessary to demonstrate utility as an 18F-peptide imaging agent.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Técnicas Químicas Combinatorias/métodos , Radioisótopos de Flúor/química , Integrinas/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Antígenos de Neoplasias/química , Línea Celular , Humanos , Integrinas/química , Imagen Molecular , Biblioteca de Péptidos , Péptidos/química , Tomografía de Emisión de Positrones
3.
Environ Sci Technol ; 51(21): 12537-12546, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-28954194

RESUMEN

Engineered nanoparticles (NPs) are increasingly used in commercial products including automotive lubricants, clothing, deodorants, sunscreens, and cosmetics and can potentially accumulate in our food supply. Given their size it is difficult to detect and visualize the presence of NPs in environmental samples, including crop plants. New analytical tools are needed to fill the void for detection and visualization of NPs in complex biological and environmental matrices. We aimed to determine whether radiolabeled NPs could be used as a noninvasive, highly sensitive analytical tool to quantitatively track and visualize NP transport and accumulation in vivo in lettuce (Lactuca sativa) and to investigate the effect of NP size on transport and distribution over time using a combination of autoradiography, positron emission tomography (PET)/computed tomography (CT), scanning electron microscopy (SEM), and transition electron microscopy (TEM). Azide functionalized NPs were radiolabeled via a "click" reaction with copper-64 (64Cu)-1,4,7-triazacyclononane triacetic acid (NOTA) azadibenzocyclooctyne (ADIBO) conjugate ([64Cu]-ADIBO-NOTA) via copper-free Huisgen-1,3-dipolar cycloaddition reaction. This yielded radiolabeled [64Cu]-NPs of uniform shape and size with a high radiochemical purity (>99%), specific activity of  2.2 mCi/mg of NP, and high stability (i.e., no detectable dissolution) over 24 h across a pH range of 5-9. Both PET/CT and autoradiography showed that [64Cu]-NPs entered the lettuce seedling roots and were rapidly transported to the cotyledons with the majority of the accumulation inside the roots. Uptake and transport of intact NPs was size-dependent, and in combination with the accumulation within the roots suggests a filtering effect of the plant cell walls at various points along the water transport pathway.


Asunto(s)
Radioisótopos de Cobre , Lactuca , Nanopartículas , Nanopartículas del Metal , Tomografía Computarizada por Tomografía de Emisión de Positrones
4.
Org Biomol Chem ; 14(37): 8659-8663, 2016 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-27714190

RESUMEN

Solid-phase peptide synthesis, head-to-tail cyclization, and subsequent radiolabeling provided a reproducible, simple, rapid synthetic method to generate the cyclic peptide radiotracer cRGDyK([18F]FBA). Herein is reported the first on-resin cyclization and 18F-radiolabeling of a cyclic peptide (cRGDyK) in an overall peptide synthesis yield of 88% (cRGDyK(NH2)) and subsequent radiolabeling yield of 14 ± 2% (decay corrected, n = 4). This approach is generally applicable to the development of an automated process for the synthesis of cyclic radiolabeled peptides for positron emission tomography (PET).


Asunto(s)
Radioisótopos de Flúor/química , Péptidos Cíclicos/química , Marcaje Isotópico/métodos , Péptidos Cíclicos/síntesis química , Tomografía de Emisión de Positrones/métodos , Técnicas de Síntesis en Fase Sólida/métodos
5.
Bioorg Med Chem Lett ; 24(7): 1846-50, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24613701

RESUMEN

Two novel small molecule gonadotropin-releasing hormone (GnRH) receptor antagonists (12 and 13) of the furamide-class were synthesized and evaluated in vitro for their receptor binding affinities for the rat GnRH receptor. Radiolabeling with no carrier added fluorine-18 of the appropriate precursors was investigated in a one-step reaction. LogP (Octanol/PBS pH 7.4) and serum stability of the compounds were investigated. The antagonists showed low nM affinity for the rat GnRH receptor. (18)F-radiolabled compounds were obtained in high radiochemical purity (>95%) and specific activity (>75 GBq/µmol). These findings suggest this class of compounds holds promise as potential probes for PET targeting of GnRH-receptor expression.


Asunto(s)
Tomografía de Emisión de Positrones , Radiofármacos/farmacología , Receptores LHRH/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Relación Dosis-Respuesta a Droga , Radioisótopos de Flúor/química , Células HEK293 , Humanos , Estructura Molecular , Radiofármacos/síntesis química , Radiofármacos/química , Ratas , Receptores LHRH/biosíntesis , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
6.
J Labelled Comp Radiopharm ; 57(9): 558-65, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25042833

RESUMEN

Cerenkov luminescence imaging (CLI) is an emerging preclinical molecular imaging modality that tracks the radiation emitted in the visible spectrum by fast moving charged decay products of radionuclides. The aim of this study was in vitro and in vivo evaluation of the two radiotracers, (90) Y-DOTA-PEG28 -A20FMDV2 ((90) Y-1) and (90) Y-DOTA-Ahx-A20FMDV2 ((90) Y-2) (>99% radiochemical purity, 3.7 GBq/µmol specific activity) for noninvasive assessment of tumors expressing the integrin αv ß6 and their future use in tumor targeted radiotherapy. Cell binding and internalization in αv ß6 -positive cells was (90) Y-1: 10.1 ± 0.8%, 50.3 ± 2.1%; (90) Y-2: 22.4 ± 1.7%, 44.7 ± 1.5% with <5% binding to αv ß6 -negative control cells. Biodistribution studies showed maximum αv ß6 -positive tumor uptake of the radiotracers at 1-h post injection (p.i.) ((90) Y-1: 0.64 ± 0.15% ID/g; (90) Y-2: 0.34 ± 0.11% ID/g) with high renal uptake (>25% ID/g at 24 h). Because of the lower tumor uptake and high radioactivity accumulation in kidneys (that could not be reduced by pre-administration of either lysine or furosemide), the luminescence signal from the αv ß6 -positive tumor was not clearly detectable in CLI images. The studies suggest that CLI is useful for indicating major organ uptake for both radiotracers; however, it reaches its limitation when there is low signal-to-noise ratio.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Integrinas/metabolismo , Luminiscencia , Neoplasias/diagnóstico por imagen , Fragmentos de Péptidos/farmacocinética , Radiofármacos/farmacocinética , Radioisótopos de Itrio/farmacocinética , Animales , Integrinas/antagonistas & inhibidores , Masculino , Ratones , Neoplasias/metabolismo , Fragmentos de Péptidos/síntesis química , Unión Proteica , Radiografía , Radiofármacos/síntesis química , Distribución Tisular , Proteínas del Envoltorio Viral/síntesis química , Proteínas del Envoltorio Viral/fisiología , Radioisótopos de Itrio/química
7.
Angew Chem Int Ed Engl ; 53(31): 8221-4, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-24931301

RESUMEN

Cells may be captured and released using a photodegradable hydrogel (photogel) functionalized with antibodies. Photogel substrates were used to first isolate human CD4 or CD8 T-cells from a heterogeneous cell suspension and then to release desired cells or groups of cells by UV-induced photodegradation. Flow cytometry analysis of the retrieved cells revealed approximately 95% purity of CD4 and CD8 T-cells, suggesting that this substrate had excellent specificity. To demonstrate the possibility of sorting cells according to their function, photogel substrates that were functionalized with anti-CD4 and anti-TNF-α antibodies were prepared. Single cells captured and stimulated on such substrates were identified by the fluorescence "halo" after immunofluorescent staining and could be retrieved by site-specific exposure to UV light through a microscope objective. Overall, it was demonstrated that functional photodegradable hydrogels enable the capture, analysis, and sorting of live cells.


Asunto(s)
Linfocitos T CD4-Positivos/citología , Linfocitos T CD8-positivos/citología , Hidrogeles , Procesos Fotoquímicos , Humanos , Rayos Ultravioleta
8.
J Med Chem ; 66(14): 9842-9852, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37417540

RESUMEN

Many anticancer drugs exhibit high systemic off-target toxicities causing severe side effects. Peptide-drug conjugates (PDCs) that target tumor-specific receptors such as integrin αvß6 are emerging as powerful tools to overcome these challenges. The development of an integrin αvß6-selective PDC was achieved by combining the therapeutic efficacy of the cytotoxic drug monomethyl auristatin E with the selectivity of the αvß6-binding peptide (αvß6-BP) and with the ability of positron emission tomography (PET) imaging by copper-64. The [64Cu]PDC-1 was produced efficiently and in high purity. The PDC exhibited high human serum stability, integrin αvß6-selective internalization, cell binding, and cytotoxicity. Integrin αvß6-selective tumor accumulation of the [64Cu]PDC-1 was visualized with PET-imaging and corroborated by biodistribution, and [64Cu]PDC-1 showed promising in vivo pharmacokinetics. The [natCu]PDC-1 treatment resulted in prolonged survival of mice bearing αvß6 (+) tumors (median survival: 77 days, vs αvß6 (-) tumor group 49 days, and all other control groups 37 days).


Asunto(s)
Cobre , Neoplasias , Animales , Ratones , Humanos , Distribución Tisular , Péptidos/metabolismo , Antígenos de Neoplasias/metabolismo , Integrinas/metabolismo , Tomografía de Emisión de Positrones/métodos , Línea Celular Tumoral
9.
J Nucl Med ; 64(4): 639-644, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36207137

RESUMEN

The integrin αvß6, an epithelium-specific cell surface receptor, is overexpressed on numerous malignancies, including the highly lethal pancreatic ductal adenocarcinomas. Here, we developed and tested a novel αvß6-targeting peptide, DOTA-5G (1) radiolabeled with 68Ga, for PET/CT imaging and 177Lu for treatment. With the goal to develop a radiotheranostic, further modifications were made for increased circulation time, renal recycling, and tumor uptake, yielding DOTA-albumin-binding moiety-5G (2). Methods: Peptides 1 and 2 were synthesized on solid phase, and their affinity for αvß6 was assessed by enzyme-linked immunosorbent assay. The peptides were radiolabeled with 68Ga and 177Lu. In vitro cell binding, internalization, and efflux of 68Ga-1 and 177Lu-2 were evaluated in αvß6-positive BxPC-3 human pancreatic cancer cells. PET/CT imaging of 68Ga-1 and 68Ga-2 was performed on female nu/nu mice bearing subcutaneous BxPC-3 tumors. Biodistribution was performed for 68Ga-1 (1 and 2 h after injection), 68Ga-2 (2 and 4 h after injection), and 177Lu-1 and 177Lu-2 (1, 24, 48, and 72 h after injection). The 177Lu-2 biodistribution data were extrapolated for human dosimetry data estimates using OLINDA/EXM 1.1. Therapeutic efficacy of 177Lu-2 was evaluated in mice bearing BxPC-3 tumors. Results: Peptides 1 and 2 demonstrated high affinity (<55 nM) for αvß6 by enzyme-linked immunosorbent assay. 68Ga-1, 68Ga-2, 177Lu-1, and 177Lu-2 were synthesized in high radiochemical purity. Rapid in vitro binding and internalization of 68Ga-1 and 177Lu-2 were observed in BxPC-3 cells. PET/CT imaging and biodistribution studies demonstrated uptake in BxPC-3 tumors. Introduction of the albumin-binding moiety in 177Lu-2 resulted in a 5-fold increase in tumor uptake and retention over time. Based on the extended dosimetry data, the dose-limiting organ for 177Lu-2 is the kidney. Treatment with 177Lu-2 prolonged median survival by 1.5- to 2-fold versus controls. Conclusion: 68Ga-1 and 177Lu-2 demonstrated high affinity for the integrin αvß6 both in vitro and in vivo, were rapidly internalized into BxPC-3 cells, and were stable in mouse and human serum. Both radiotracers showed favorable pharmacokinetics in preclinical studies, with predominantly renal excretion and good tumor-to-normal-tissue ratios. Favorable human dosimetry data suggest the potential of 177Lu-2 as a treatment for pancreatic ductal adenocarcinoma.


Asunto(s)
Radioisótopos de Galio , Tomografía Computarizada por Tomografía de Emisión de Positrones , Femenino , Humanos , Animales , Ratones , Radioisótopos de Galio/farmacocinética , Distribución Tisular , Línea Celular Tumoral , Péptidos , Albúminas , Neoplasias Pancreáticas
10.
Proc Natl Acad Sci U S A ; 106(42): 17904-9, 2009 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-19815497

RESUMEN

The rapid development and translation of targeted molecular imaging agents from bench to bedside is currently a slow process, with a clear bottleneck between the discovery of new compounds and the development of an appropriate molecular imaging agent. The ability to identify promising new molecular imaging agents, as well as failures, much earlier in the development process using high-throughput screening techniques could save significant time and money. This work combines the advantages of combinatorial chemistry, site-specific solid-phase radiolabeling, and in vivo imaging for the rapid screening of molecular imaging agents. A one-bead-one-compound library was prepared and evaluated in vitro, leading to the identification of 42 promising lead peptides. Over 11 consecutive days, these peptides, along with a control peptide, were successfully radiolabeled with 4-[(18)F]fluorobenzoic acid and evaluated in vivo using microPET. Four peptides were radiolabeled per day, followed by simultaneous injection of each individual peptide into 2 animals. As a result, 4 promising new molecular imaging agents were identified that otherwise would not have been selected based solely on in vitro data. This study is the first example of the practical application of a high-throughput screening approach using microPET imaging of [(18)F]-labeled peptides for the rapid in vivo identification of potential new molecular imaging agents.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Radiofármacos/química , Animales , Técnicas Químicas Combinatorias , Radioisótopos de Flúor , Ratones , Neoplasias Experimentales/diagnóstico por imagen , Oligopéptidos/química , Biblioteca de Péptidos , Tomografía de Emisión de Positrones
11.
Pharmaceutics ; 14(4)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35456579

RESUMEN

Serum albumin binding moieties (ABMs) such as the Evans blue (EB) dye fragment and the 4-(p-iodophenyl)butyryl (IP) have been used to improve the pharmacokinetic profile of many radiopharmaceuticals. The goal of this work was to directly compare these two ABMs when conjugated to an integrin αvß6 binding peptide (αvß6-BP); a peptide that is currently being used for positron emission tomography (PET) imaging in patients with metastatic cancer. The ABM-modified αvß6-BP peptides were synthesized with a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetracetic acid (DOTA) chelator for radiolabeling with copper-64 to yield [64Cu]Cu DOTA-EB-αvß6-BP ([64Cu]1) and [64Cu]Cu DOTA-IP-αvß6-BP ([64Cu]2). Both peptides were evaluated in vitro for serum albumin binding, serum stability, and cell binding and internalization in the paired engineered melanoma cells DX3puroß6 (αvß6 +) and DX3puro (αvß6 −), and pancreatic BxPC-3 (αvß6 +) cells and in vivo in a BxPC-3 xenograft mouse model. Serum albumin binding for [64Cu]1 and [64Cu]2 was 53−63% and 42−44%, respectively, with good human serum stability (24 h: [64Cu]1 76%, [64Cu]2 90%). Selective αvß6 cell binding was observed for both [64Cu]1 and [64Cu]2 (αvß6 (+) cells: 30.3−55.8% and 48.5−60.2%, respectively, vs. αvß6 (−) cells <3.1% for both). In vivo BxPC-3 tumor uptake for both peptides at 4 h was 5.29 ± 0.59 and 7.60 ± 0.43% ID/g ([64Cu]1 and [64Cu]2, respectively), and remained at 3.32 ± 0.46 and 4.91 ± 1.19% ID/g, respectively, at 72 h, representing a >3-fold improvement over the non-ABM parent peptide and thereby providing improved PET images. Comparing [64Cu]1 and [64Cu]2, the IP-ABM-αvß6-BP [64Cu]2 displayed higher serum stability, higher tumor accumulation, and lower kidney and liver accumulation, resulting in better tumor-to-organ ratios for high contrast visualization of the αvß6 (+) tumor by PET imaging.

12.
Biomed Pharmacother ; 145: 112469, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34864315

RESUMEN

Cancer and atherosclerosis are chronic diseases that share common characteristics at both early and advanced stages and can arise from multiple factors. Both diseases are characterized by uncontrolled cell proliferation, inflammation, angiogenesis and apoptosis. Herein we investigated the ability of a peptide (CTHRSSVVC), that was previously reported to bind atherosclerotic lesions to home in the tumor microenvironment. The CTHRSSVVC peptide was synthesized on solid phase and N-terminally labeled with a sulfo-Cy5 dye. The specific binding to macrophage was evaluated in vitro with flow cytometry and immunofluorescence and in vivo for tumor targeting in BALB/c mice bearing a 4T1 tumor using optical imaging. The sulfo-Cy5-CTHRSSVVC peptide was synthesized in greater than 99% purity. No selective binding of the sulfo-Cy5-CTHRSSVVC peptide to macrophages in vitro was observed, however in vivo the sulfo-Cy5-CTHRSSVVC peptide accumulated in the 4T1 tumor, with a tumor-to-normal tissue ratio of 7.21 ± 1.44 at 2 h post injection. Ex vivo analysis of tumor tissue by confocal microscopy suggested that the sulfo-Cy5-CTHRSSVVC peptide had accumulated in the stroma of the tumor specifically, in regions of spindle shaped cells. In conclusion, although the target for the sulfo-Cy5-CTHRSSVVC peptide remains to be identified, the Cy5-CTHRSSVVC peptide warrants further investigation as a tumor imaging agent.


Asunto(s)
Antígenos CD/análisis , Antígenos de Diferenciación Mielomonocítica/análisis , Macrófagos/inmunología , Neoplasias/diagnóstico por imagen , Péptidos , Placa Aterosclerótica/diagnóstico por imagen , Receptores de Superficie Celular/análisis , Animales , Carbocianinas/farmacología , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Colorantes Fluorescentes/farmacología , Humanos , Inmunohistoquímica , Ratones , Imagen Óptica/métodos , Péptidos/síntesis química , Péptidos/química , Péptidos/metabolismo , Péptidos/farmacología , Unión Proteica , Receptores Depuradores/análisis , Células THP-1
13.
Bioconjug Chem ; 22(12): 2593-9, 2011 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-22034937

RESUMEN

We previously reported the identification and structure-activity analysis of bithiazole-based correctors of defective cellular processing of the cystic fibrosis-causing CFTR mutant, ΔF508-CFTR. Here, we report the synthesis and uptake of a functional, fluorescently labeled bithiazole corrector. Following synthesis and functional analysis of four bithiazole-fluorophore conjugates, we found that 5, a bithazole-based BODIPY conjugate, had low micromolar potency for correction of defective ΔF508-CFTR cellular misprocessing, with comparable efficacy to benchmark corrector corr-4a. Intravenous administration of 5 to mice established its stability in extrahepatic tissues for tens of minutes. By fluorescence imaging of whole-body frozen slices, fluorescent corrector 5 was visualized strongly in gastrointestinal organs, with less in lung and liver. Our results provide proof-of-concept for mapping the biodistribution of a ΔF508-CFTR corrector by fluorophore labeling and fluorescence imaging of whole-body slices.


Asunto(s)
Compuestos de Boro/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/análisis , Colorantes Fluorescentes/química , Tiazoles/química , Imagen de Cuerpo Entero , Animales , Fibrosis Quística/diagnóstico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Ratones , Mutación
14.
Phys Med Biol ; 66(6): 06RM01, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33339012

RESUMEN

Positron emission tomography (PET) plays an increasingly important role in research and clinical applications, catalysed by remarkable technical advances and a growing appreciation of the need for reliable, sensitive biomarkers of human function in health and disease. Over the last 30 years, a large amount of the physics and engineering effort in PET has been motivated by the dominant clinical application during that period, oncology. This has led to important developments such as PET/CT, whole-body PET, 3D PET, accelerated statistical image reconstruction, and time-of-flight PET. Despite impressive improvements in image quality as a result of these advances, the emphasis on static, semi-quantitative 'hot spot' imaging for oncologic applications has meant that the capability of PET to quantify biologically relevant parameters based on tracer kinetics has not been fully exploited. More recent advances, such as PET/MR and total-body PET, have opened up the ability to address a vast range of new research questions, from which a future expansion of applications and radiotracers appears highly likely. Many of these new applications and tracers will, at least initially, require quantitative analyses that more fully exploit the exquisite sensitivity of PET and the tracer principle on which it is based. It is also expected that they will require more sophisticated quantitative analysis methods than those that are currently available. At the same time, artificial intelligence is revolutionizing data analysis and impacting the relationship between the statistical quality of the acquired data and the information we can extract from the data. In this roadmap, leaders of the key sub-disciplines of the field identify the challenges and opportunities to be addressed over the next ten years that will enable PET to realise its full quantitative potential, initially in research laboratories and, ultimately, in clinical practice.


Asunto(s)
Inteligencia Artificial , Neoplasias/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones/tendencias , Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/tendencias , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional , Cinética , Oncología Médica/métodos , Oncología Médica/tendencias , Tomografía Computarizada por Tomografía de Emisión de Positrones/historia , Pronóstico , Radiofármacos , Biología de Sistemas , Tomografía Computarizada por Rayos X
15.
J Pathol ; 218(3): 380-90, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19334050

RESUMEN

Despite the availability of new targeted therapies, ductal pancreatic adenocarcinoma continues to carry a poor prognosis. Carcinoembryonic antigen-related cell adhesion molecule (CEACAM)6 has been reported as a potential biomarker and therapy target for this malignancy. We have evaluated CEACAM6 as a potential therapy target, using an antibody-drug conjugate (ADC). Expression of CEACAM6 in pancreatic adenocarcinomas was determined using immunohistochemistry on tissue microarrays. The expression pattern in granulocytes and granulocytic precursors was measured by flow cytometry. Murine xenograft and non-human primate models served to evaluate efficacy and safety, respectively. Robust expression of CEACAM6 was found in > 90% of invasive pancreatic adenocarcinomas as well as in intraepithelial neoplastic lesions. In the granulocytic lineage, CEACAM6 was expressed at all stages of granulocytic maturation except for the early lineage-committed precursor cell. The anti-CEACAM6 ADC showed efficacy against established CEACAM6-expressing tumours. In non-human primates, antigen-dependent toxicity of the ADC consisted of dose-dependent and reversible depletion of granulocytes and their precursors. This was associated with preferential and rapid localization of the antibody in bone marrow, as determined by sequential in vivo PET imaging of the radiolabelled anti-CEACAM6. Localization of the radiolabelled tracer could be attenuated by predosing with unlabelled antibody confirming specific accumulation in this compartment. Based on the expression pattern in normal and malignant pancreatic tissues, efficacy against established tumours and limited and reversible bone marrow toxicity, we propose that CEACAM6 should be considered for an ADC-based therapy approach against pancreatic adenocarcinomas and possibly other CEACAM6-positive neoplasms.


Asunto(s)
Adenocarcinoma/terapia , Moléculas de Adhesión Celular/antagonistas & inhibidores , Inmunoconjugados/uso terapéutico , Neoplasias Pancreáticas/terapia , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/toxicidad , Antígenos CD/inmunología , Antígenos CD/metabolismo , Moléculas de Adhesión Celular/inmunología , Moléculas de Adhesión Celular/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Estudios de Factibilidad , Femenino , Proteínas Ligadas a GPI , Células Madre Hematopoyéticas/metabolismo , Humanos , Inmunoconjugados/farmacocinética , Inmunoconjugados/toxicidad , Macaca fascicularis , Masculino , Ratones , Ratones Desnudos , Proteínas de Neoplasias/metabolismo , Activación Neutrófila , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología
16.
J Allergy Clin Immunol Pract ; 8(7): 2216-2219, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32209401

RESUMEN

Psychological conditions occur frequently in college students. One contributing factor is the onset of most mental health disorders occurring in late adolescence and early adulthood, as well as the identity formation and individuation that is typical of this developmental stage. Precollege trauma (emotional, physical, sexual, and witness to violence) and lower socioeconomic status can set the stage for psychological difficulties. Some of many stressors that may affect college athletes include peer pressures, independence, need to please family, friends, and coaches, high level of expectations with a very strong commitment to succeeding and winning in competitive and intense intercollegiate sports, time management for academic demands, sports, relationships, and well-being, mood status, history of mental illness, injuries including concussions, and adjusting to the length of time for recovery from injuries, fears of reinjury, or return-to-play concerns, managing body and weight concerns related to performance, and unexpected medical conditions such as infectious mononucleosis. A case is presented of a patient who is a college student-athlete with mild intermittent asthma and seasonal allergic rhinitis who was found to have generalized anxiety, surreptitious cannabis use, and bulimic symptoms. He was angry at his position coach because of lack of playing time.


Asunto(s)
Traumatismos en Atletas , Conmoción Encefálica , Deportes , Adolescente , Adulto , Atletas , Humanos , Masculino , Estudiantes
17.
Mol Imaging Biol ; 22(5): 1182-1183, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32253668

RESUMEN

This article was updated to correct the axes in Figures 4e and 5d.

18.
Mol Imaging Biol ; 22(5): 1170-1181, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32002763

RESUMEN

PURPOSE: The purpose of this study was to develop and evaluate two αvß6-targeted fluorescent imaging agents. The integrin subtype αvß6 is significantly upregulated in a wide range of epithelial derived cancers, plays a key role in invasion and metastasis, and expression is often located at the invasive edge of tumors. αvß6-targeted fluorescent imaging agents have the potential to guide surgical resection leading to improved patient outcomes. Both imaging agents were based on the bi-PEGylated peptide NH2-PEG28-A20FMDV2-K16R-PEG28 (1), a peptide that has high affinity and selectivity for the integrin αvß6: (a) 5-FAM-X-PEG28-A20FMDV2-K16R-PEG28 (2), and (b) IRDye800-PEG28-A20FMDV2-K16R-PEG28 (3). PROCEDURES: Peptides were synthesized using solid-phase peptide synthesis and standard Fmoc chemistry. Affinity for αvß6 was evaluated by ELISA. In vitro binding, internalization, and localization of 2 was monitored using confocal microscopy in DX3puroß6 (αvß6+) and DX3puro (αvß6-) cells. The in vivo imaging and ex vivo biodistribution of 3 was evaluated in three preclinical mouse models, DX3puroß6/DX3puro and BxPC-3 (αvß6+) tumor xenografts and a BxPC-3 orthotopic pancreatic tumor model. RESULTS: Peptides were obtained in > 99% purity. IC50 values were 28 nM (2) and 39 nM (3). Rapid αvß6-selective binding and internalization of 2 was observed. Fluorescent intensity (FLI) measurements extracted from the in vivo images and ex vivo biodistribution confirmed uptake and retention of 3 in the αvß6 positive subcutaneous and orthotopic tumors, with negligible uptake in the αvß6-negative tumor. Blocking studies with a known αvß6-targeting peptide demonstrated αvß6-specific binding of 3. CONCLUSION: Two fluorescence imaging agents were developed. The αvß6-specific uptake, internalization, and endosomal localization of the fluorescence agent 2 demonstrates potential for targeted therapy. The selective uptake and retention of 3 in the αvß6-positive tumors enabled clear delineation of the tumors and surgical resection indicating 3 has the potential to be utilized during image-guided surgery.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Integrinas/metabolismo , Sondas Moleculares/química , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Imagen Óptica , Animales , Endocitosis , Femenino , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Ratones Desnudos , Sondas Moleculares/síntesis química , Factores de Tiempo
19.
J Nucl Med ; 61(12): 1717-1719, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32948681

RESUMEN

The true impact and long-term damage to organs such as the lungs after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remain to be determined. Noninvasive molecularly targeted imaging may play a critical role in aiding visualization and understanding of the systemic damage. We have identified αvß6 as a molecular target; an epithelium-specific cell surface receptor that is low or undetectable in healthy adult epithelium but upregulated in select injured tissues, including fibrotic lung. Herein we report the first human PET/CT images using the integrin αvß6-binding peptide (18F-αvß6-BP) in a patient 2 mo after the acute phase of infection. Minimal uptake of 18F-αvß6-BP was noted in normal lung parenchyma, with uptake being elevated in areas corresponding to opacities on CT. This case suggests that 18F-αvß6-BP PET/CT is a promising noninvasive approach to identify the presence and potentially monitor the persistence and progression of lung damage.


Asunto(s)
Antígenos de Neoplasias/metabolismo , COVID-19/diagnóstico por imagen , COVID-19/metabolismo , Integrinas/metabolismo , Pulmón/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones , Anciano , Humanos , Masculino
20.
Mol Imaging Biol ; 22(6): 1543-1552, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32383076

RESUMEN

PURPOSE: The αvß6-BP peptide selectively targets the integrin αvß6, a cell surface receptor recognized as a prognostic indicator for several challenging malignancies. Given that the 4-[18F]fluorobenzoyl (FBA)-labeled peptide is a promising PET imaging agent, radiolabeling via aluminum [18F]fluoride chelation and introduction of an albumin binding moiety (ABM) have the potential to considerably simplify radiochemistry and improve the pharmacokinetics by increasing biological half-life. PROCEDURES: The peptides NOTA-αvß6-BP (1) and NOTA-K(ABM)-αvß6-BP (2) were synthesized on solid phase, radiolabeled with aluminum [18F]fluoride, and evaluated in vitro (integrin ELISA, albumin binding, cell studies) and in vivo in mouse models bearing paired DX3puroß6 [αvß6(+)]/DX3puro [αvß6(-)], and for [18F]AlF 2, BxPC-3 [αvß6(+)] cell xenografts (PET imaging, biodistribution). RESULTS: The peptides were radiolabeled in 23.0 ± 5.7 % and 22.1 ± 4.4 % decay-corrected radiochemical yield, respectively, for [18F]AlF 1 and [18F]AlF 2. Both demonstrated excellent affinity and selectivity for integrin αvß6 by ELISA (IC50(αvß6) = 3-7 nM vs IC50(αvß3) > 10 µM) and in cell binding studies (51.0 ± 0.7 % and 47.2 ± 0.7 % of total radioactivity bound to DX3puroß6 cells at 1 h, respectively, vs. ≤ 1.2 % to DX3puro for both compounds). The radiotracer [18F]AlF 1 bound to human serum at 16.3 ± 1.9 %, compared to 67.5 ± 1.0 % for the ABM-containing [18F]AlF 2. In vivo studies confirmed the effect of the ABM on blood circulation (≤ 0.1 % ID/g remaining in blood for [18F]AlF 1 as soon as 1 h p.i. vs. > 2 % ID/g for [18F]AlF 2 at 6 h p.i.) and higher αvß6(+) tumor uptake (4 h: DX3puroß6; [18F]AlF 1: 3.0 ± 0.7 % ID/g, [18F]AlF 2: 7.2 ± 0.7 % ID/g; BxPC-3; [18F]AlF 2: 10.2 ± 0.1 % ID/g). CONCLUSION: Both compounds were prepared using standard chemistries; affinity and selectivity for integrin αvß6 in vitro remained unaffected by the albumin binding moiety. In vivo, the albumin binding moiety resulted in prolonged circulation and higher αvß6-targeted uptake.


Asunto(s)
Albúminas/metabolismo , Compuestos de Aluminio/química , Antígenos de Neoplasias/metabolismo , Fluoruros/química , Radioisótopos de Flúor/química , Integrinas/metabolismo , Péptidos/farmacocinética , Animales , Línea Celular Tumoral , Femenino , Ratones Desnudos , Péptidos/química , Tomografía Computarizada por Tomografía de Emisión de Positrones , Unión Proteica , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA