Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 141(6): 1056-67, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20550939

RESUMEN

In the mouse olfactory system, the anatomical locations of olfactory sensory neurons (OSNs) roughly correlate with their axonal projection sites along the dorsal-ventral (D-V) axis of the olfactory bulb (OB). Here we report that an axon guidance receptor, Neuropilin-2 (Nrp2), and its repulsive ligand, Semaphorin-3F (Sema3F), are expressed by OSNs in a complementary manner that is important for establishing olfactory map topography. Sema3F is secreted by early-arriving axons of OSNs and is deposited at the anterodorsal OB to repel Nrp2-positive axons that arrive later. Sequential arrival of OSN axons as well as the graded and complementary expression of Nrp2 and Sema3F by OSNs help to form the topographic order along the D-V axis.


Asunto(s)
Axones/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Bulbo Olfatorio/metabolismo , Animales , Expresión Génica , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Neuropilina-2/metabolismo , Receptores de Superficie Celular/metabolismo , Inactivación del Cromosoma X
2.
J Cell Sci ; 129(9): 1802-14, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26945060

RESUMEN

Semaphorin 3A (Sema3A), a secretory semaphorin, exerts various biological actions through a complex between neuropilin-1 and plexin-As (PlexAs). Sema3A induces retrograde signaling, which is involved in regulating dendritic localization of GluA2 (also known as GRIA2), an AMPA receptor subunit. Here, we investigated a possible interaction between retrograde signaling pathways for Sema3A and nerve growth factor (NGF). Sema3A induces colocalization of PlexA4 (also known as PLXNA4) signals with those of tropomyosin-related kinase A (TrkA, also known as NTRK1) in growth cones, and these colocalized signals were then observed along the axons. The time-lapse imaging of PlexA4 and several TrkA mutants showed that the kinase and dynein-binding activity of TrkA were required for Sema3A-induced retrograde transport of the PlexA4-TrkA complex along the axons. The inhibition of the phosphoinositide 3-kinase (PI3K)-Akt signal, a downstream signaling pathway of TrkA, in the distal axon suppressed Sema3A-induced dendritic localization of GluA2. The knockdown of TrkA suppressed Sema3A-induced dendritic localization of GluA2 and that suppressed Sema3A-regulated dendritic branching both in vitro and in vivo These findings suggest that by interacting with PlexA4, TrkA plays a crucial role in redirecting local Sema3A signaling to retrograde axonal transport, thereby regulating dendritic GluA2 localization and patterning.


Asunto(s)
Proteínas Aviares/metabolismo , Pollos/metabolismo , Conos de Crecimiento/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptor trkA/metabolismo , Receptores de Superficie Celular/metabolismo , Semaforina-3A/metabolismo , Transducción de Señal/fisiología , Animales , Proteínas Aviares/genética , Pollos/genética , Femenino , Humanos , Masculino , Ratones , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor trkA/genética , Receptores de Superficie Celular/genética , Semaforina-3A/genética
3.
J Neurosci ; 33(15): 6691-704, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23575865

RESUMEN

Developmental perturbations during adolescence have been hypothesized to be a risk factor for the onset of several neuropsychiatric diseases. However the physiological alterations that result from such insults are incompletely understood. We investigated whether a defined perturbation during adolescence affected hippocampus-dependent sensorimotor gating functions, a proposed endophenotype in several psychiatric diseases, most notably schizophrenia. The developmental perturbation was induced during adolescence in mice using an antimitotic agent, methylazoxymethanol acetate (MAM), during postnatal weeks (PW) 4-6. MAM-treated mice showed a decrease in hippocampal neurogenesis immediately after treatment, which was restored by PW10 in adulthood. However, the mice treated with MAM during adolescent stages exhibited a persistent sensorimotor gating deficiency and a reduction in prepulse inhibition-related activation of hippocampal and prefrontal neurons in adulthood. Cellular analyses found a reduction of GABAergic inhibitory neurons and abnormal dendritic morphology of immature neurons in the dentate gyrus (DG). Interestingly, bilateral infusion of muscimol, a GABAA receptor agonist, into the DG region reversed the prepulse inhibition abnormality in MAM-treated mice. Furthermore, the behavioral deficits together with the decrease in the number of GABAergic neurons in this MAM model were rescued by exposure to an enriched environment during a defined critical adolescent period. These observations suggest a possible role for GABAergic interneurons in the DG during adolescence. This role may be related to the establishment of neural circuitry required for sensorimotor gating. It is plausible that changes in neurogenesis during this window may affect the survival of GABAergic interneurons, although this link needs to be causally addressed.


Asunto(s)
Período Crítico Psicológico , Giro Dentado/fisiología , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Acetato de Metilazoximetanol/toxicidad , Filtrado Sensorial/fisiología , Factores de Edad , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Dendritas , Giro Dentado/metabolismo , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Quinasas Similares a Doblecortina , Interacciones Farmacológicas , Ambiente , Agonistas del GABA/administración & dosificación , Agonistas del GABA/farmacología , Neuronas GABAérgicas/metabolismo , Inhibición Psicológica , Interneuronas/citología , Interneuronas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Ratones Endogámicos C57BL , Microinyecciones , Proteínas Asociadas a Microtúbulos/metabolismo , Muscimol/administración & dosificación , Muscimol/farmacología , Muscimol/uso terapéutico , Neurogénesis/efectos de los fármacos , Neuropéptidos/metabolismo , Corteza Prefrontal/fisiología , Proteínas Serina-Treonina Quinasas , Esquizofrenia/inducido químicamente , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/fisiopatología
4.
Biochem Biophys Res Commun ; 444(3): 307-10, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24440696

RESUMEN

This is the second report of a series paper, which reports molecular mechanisms underlying the occurrence of pruning spine phase after rapid spinogenesis phase in neonates and young infant in the primate brain. We performed microarray analysis between the peak of spine numbers [postnatal 3 months (M)] and spine pruning (postnatal 6M) in prefrontal, inferior temporal, and primary visual cortices of the common marmoset (Callithrix jacchus). The pruning phase is not clearly defined in rodents but is in primates including the marmoset. The differentially expressed genes between 3M and 6M in all three cortical areas were selected by two-way analysis of variance. The list of selected genes was analyzed by canonical pathway analysis using "Ingenuity Pathway Analysis of complex omics data" (IPA; Ingenuity Systems, Qiagen, Hilden, Germany). In this report, we discuss these lists of genes for the glutamate receptor system, G-protein-coupled neuromodulator system, protector of normal tissue and mitochondria, and reelin. (1) Glutamate is a common neurotransmitter. Its receptors AMPA1, GRIK1, and their scaffold protein DLG4 decreased as spine numbers decreased. Instead, GRIN3 (NMDA receptor) increased, suggesting that strong NMDA excitatory currents may be required for a single neuron to receive sufficient net synaptic activity in order to compensate for the decrease in synapse. (2) Most of the G protein-coupled receptor genes (e.g., ADRA1D, HTR2A, HTR4, and DRD1) in the selected list were upregulated at 6M. The downstream gene ROCK2 in these receptor systems plays a role of decreasing synapses, and ROCK2 decreased at 6M. (3) Synaptic phagosytosis by microglia with complement and other cytokines could cause damage to normal tissue and mitochondria. SOD1, XIAP, CD46, and CD55, which play protective roles in normal tissue and mitochondria, showed higher expression at 6M than at 3M, suggesting that normal brain tissue is more protected at 6M. (4) Reelin has an important role in cortical layer formation. In addition, RELN and three different pathways of reelin were expressed at 6M, suggesting that new synapse formation decreased at that age. Moreover, if new synapses were formed, their positions were free and probably dependent on activity.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Corteza Cerebral/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurotransmisores/fisiología , Receptores de Glutamato/genética , Serina Endopeptidasas/metabolismo , Sinapsis , Animales , Animales Recién Nacidos , Callithrix , Corteza Cerebral/crecimiento & desarrollo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteína Reelina , Maduración Sexual
5.
Biochem Biophys Res Commun ; 444(3): 302-6, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24485715

RESUMEN

The synapse number and the related dendritic spine number in the cerebral cortex of primates shows a rapid increase after birth. Depending on the brain region and species, the number of synapses reaches a peak before adulthood, and pruning takes place after this peak (overshoot-type synaptic formation). Human mental disorders, such as autism and schizophrenia, are hypothesized to be a result of either too weak or excessive pruning after the peak is reached. Thus, it is important to study the molecular mechanisms underlying overshoot-type synaptic formation, particularly the pruning phase. To examine the molecular mechanisms, we used common marmosets (Callithrix jacchus). Microarray analysis of the marmoset cortex was performed in the ventrolateral prefrontal, inferior temporal, and primary visual cortices, where changes in the number of dendritic spines have been observed. The spine number of all the brain regions above showed a peak at 3 months (3 M) after birth and gradually decreased (e.g., at 6 M and in adults). In this study, we focused on genes that showed differential expression between ages of 3 M and 6 M and on the differences whose fold change (FC) was greater than 1.2. The selected genes were subjected to canonical pathway analysis, and in this study, we describe axon guidance signaling, which had high plausibility. The results showed a large number of genes belonging to subsystems within the axon guidance signaling pathway, macrophages/immune system, glutamate system, and others. We divided the data and discussion of these results into 2 papers, and this is the first paper, which deals with the axon guidance signaling and macrophage/immune system. Other systems will be described in the next paper. Many components of subsystems within the axon guidance signaling underwent changes in gene expression from 3 M to 6 M so that the synapse/dendritic spine number would decrease at 6 M. Thus, axon guidance signaling probably contributes to the decrease in synapse/dendritic spine number at 6 M, the phenomenon that fits the overshoot-type synaptic formation in primates. Microglial activity (evaluated by quantifying AIF1 expression) and gene expression of molecules that modulate microglia, decreased at 6 M, just like the synapse/dendritic spine number. Thus, although microglial activity is believed to be related to phagocytosis of synapses/dendritic spines, microglial activity alone cannot explain how pruning was accelerated in the pruning phase. On the other hand, expression of molecules that tag synapses/dendritic spines as a target of phagocytosis by microglia (e.g., complement components) increased at 6 M, suggesting that these tagging proteins may be involved in the acceleration of pruning during the pruning phase.


Asunto(s)
Axones , Callithrix/genética , Corteza Cerebral/metabolismo , Espinas Dendríticas , Perfilación de la Expresión Génica , Maduración Sexual , Transducción de Señal , Sinapsis , Animales , Callithrix/crecimiento & desarrollo , Callithrix/inmunología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/inmunología , ADN Complementario/genética , Femenino , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos
6.
Nat Neurosci ; 11(4): 440-9, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18327254

RESUMEN

During their migration, cerebellar granule cells switch from a tangential to a radial mode of migration. We have previously demonstrated that this involves the transmembrane semaphorin Sema6A. We show here that plexin-A2 is the receptor that controls Sema6A function in migrating granule cells. In plexin-A2-deficient (Plxna2(-/-)) mice, which were generated by homologous recombination, many granule cells remained in the molecular layer, as we saw in Sema6a mutants. A similar phenotype was observed in mutant mice that were generated by mutagenesis with N-ethyl-N-nitrosourea and had a single amino-acid substitution in the semaphorin domain of plexin-A2. We found that this mutation abolished the ability of Sema6A to bind to plexin-A2. Mouse chimera studies further suggested that plexin-A2 acts in a cell-autonomous manner. We also provide genetic evidence for a ligand-receptor relationship between Sema6A and plexin-A2 in this system. Using time-lapse video microscopy, we found that centrosome-nucleus coupling and coordinated motility were strongly perturbed in Sema6a(-/-) and Plxna2(-/-) granule cells. This suggests that semaphorin-plexin signaling modulates cell migration by controlling centrosome positioning.


Asunto(s)
Movimiento Celular/fisiología , Núcleo Celular/metabolismo , Centrosoma/metabolismo , Cerebelo/crecimiento & desarrollo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Superficie Celular/metabolismo , Semaforinas/metabolismo , Animales , Células Cultivadas , Cerebelo/citología , Cerebelo/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/metabolismo , Receptores de Superficie Celular/genética , Semaforinas/genética
7.
J Neurosci ; 30(20): 7049-60, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20484647

RESUMEN

Hippocampal mossy fibers project preferentially to the proximal-most lamina of the suprapyramidal region of CA3, the stratum lucidum, and proximal-most parts of the infrapyrmidal region of CA3c. Molecular mechanisms that govern the lamina-restricted projection of mossy fibers, however, have not been fully understood. We previously studied functions of neural repellent Semaphorin-6A (Sema6A), a class 6 transmembrane semaphorin, and its receptors, plexin-A2 (PlxnA2) and PlxnA4, in mossy fiber projection and have proposed that PlxnA4-expressing mossy fibers are principally prevented from entering the Sema6A-expressing suprapyramidal and infrapyramidal regions of CA3 but are permitted to grow into proximal parts of the regions, where repulsive activity of Sema6A is competitively suppressed by PlxnA2 (Suto et al., 2007). In the present study we demonstrate that Sema6B, another class 6 transmembrane semaphorin, is expressed in CA3 and repels mossy fibers in a PlxnA4-dependent manner in vitro. In Sema6B-deficient mice several mossy fibers aberrantly project to the stratum radiatum and the stratum oriens. The number of aberrant mossy fibers is increased in Sema6A;Sema6B double knock-out mice, indicating that Sema6A and Sema6B function additively to regulate proper projection of mossy fibers. PlxnA2 does not suppress the Sema6B response, but itself promotes growth of mossy fibers. Based on these results, we propose that the balance between mossy fiber repulsion by Sema6A and Sema6B and attraction by PlxnA2 and unknown molecule(s) prescribes the areas permissive for mossy fibers to innervate.


Asunto(s)
Membrana Basal/fisiología , Hipocampo/citología , Fibras Musgosas del Hipocampo/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/citología , Receptores de Superficie Celular/fisiología , Semaforinas/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Embrión de Mamíferos , Proteínas Fluorescentes Verdes/genética , Conos de Crecimiento/fisiología , Ligandos , Ratones , Proteínas del Tejido Nervioso/genética , Neuronas/fisiología , Técnicas de Cultivo de Órganos , Receptores de Superficie Celular/genética , Semaforinas/deficiencia , Transfección/métodos
8.
Dev Biol ; 321(1): 251-62, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18625214

RESUMEN

The cardiac neural crest, a subpopulation of the neural crest, contributes to the cardiac outflow tract formation during development. However, how it follows the defined long-range migratory pathway remains unclear. We show here that the migrating cardiac neural crest cells (NCCs) express Plexin-A2, Plexin-D1 and Neuropilin. The membrane-bound ligands for Plexin-A2, Semaphorin (Sema)6A and Sema6B, are expressed in the dorsal neural tube and the lateral pharyngeal arch mesenchyme (the NCC "routes"). Sema3C, a ligand for Plexin-D1/neuropilin-1, is expressed in the cardiac outflow tract (the NCC "target"). Sema6A and Sema6B repel neural crest cells, while Sema3C attracts neural crest cells. Sema6A and Sema6B repulsion and Sema3C attraction are diminished either when Plexin-A2 and Neuropilin-1, or when Plexin-D1, respectively, are knocked down in NCCs. When RNAi knockdown diminishes each receptor in NCCs, the NCCs fail to migrate into the cardiac outflow tract in the developing chick embryo. Furthermore, Plexin-A2-deficient mice exhibit defects of cardiac outflow tract formation. We therefore conclude that the coordination of repulsive cues provided by Sema6A/Sema6B through Plexin-A2 paired with the attractive cue by Sema3C through Plexin-D1 is required for the precise navigation of migrating cardiac NCCs.


Asunto(s)
Corazón/embriología , Cresta Neural/embriología , Semaforinas/metabolismo , Animales , Línea Celular , Embrión de Pollo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Cresta Neural/citología , Neuropilinas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
9.
Int Immunol ; 20(3): 413-20, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18209113

RESUMEN

Semaphorins and their receptors play crucial roles not only in axon guidance during neuronal development but also in the regulation of immune responses. Plexin-A4, a member of the plexin-A subfamily, forms a receptor complex with neuropilins and transduces signals for class III semaphorins in the nervous system. Although plexin-A4 is also expressed in the lymphoid tissues, the involvement of plexin-A4 in immune responses remains unknown. To explore the role of plexin-A4 in the immune system, we analyzed immune responses in plexin-A4-deficient (plexin-A4-/-) mice. Among immune cells, plexin-A4 mRNA was detected in T cells, dendritic cells and macrophages but not in B cells and NK cells. Plexin-A4-/- mice had normal numbers and cell surface markers for each lymphocyte subset, suggesting that plexin-A4 is not essential for lymphocyte development. However, plexin-A4-/- mice exhibited enhanced antigen-specific T cell responses and heightened sensitivity to experimental autoimmune encephalomyelitis. Plexin-A4-/- T cells exhibited hyperproliferative responses to anti-CD3 stimulation and to allogeneic dendritic cells in vitro. Furthermore, this hyperproliferation was also observed in both T cells from neuropilin-1 mutant (npn-1(Sema-)) mice, in which the binding site of class III semaphorins is disrupted, and T cells from Sema3A-deficient (Sema-3A-/-) mice. Collectively, these results suggest that plexin-A4, as a component of the receptor complex for class III semaphorins, negatively regulates T cell-mediated immune responses.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/inmunología , Receptores de Superficie Celular/inmunología , Linfocitos T/inmunología , Animales , Autoinmunidad/inmunología , Proliferación Celular , Ligandos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Receptores de Superficie Celular/genética , Semaforinas/inmunología , Linfocitos T/citología
10.
Brain Res ; 1710: 209-219, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30599138

RESUMEN

The corticospinal tract (CST) has a complex and long trajectory that originates in the cerebral cortex and ends in the spinal cord. Semaphorin 6A (Sema6A), a member of the semaphorin family, is an important regulator of CST axon guidance. Previous studies have shown that postnatal Sema6A mutant mice have CST defects at the midbrain-hindbrain boundary and medulla. However, the routes the aberrant fibers take throughout the Sema6A mutant brain remain unknown. In this study, we performed 3D reconstruction of immunostained CST fibers to reevaluate the details of the abnormal CST trajectories in the brains of adult Sema6A mutant mice. Our results showed that the axon guidance defects reported in early postnatal mutants were consistently observed in adulthood. Those abnormal trajectories revealed by 3D analysis of brain sections were, however, more complex and variable than previously thought. In addition, 3D analysis allowed us to identify a few new patterns of aberrant projections. First, a subset of fibers that separated from and descended in parallel to the main bundle projected laterally at the caudal pons, subsequently changed direction by turning caudally, and extended to the medulla. Second, some abnormal fibers returned to the correct trajectory after deviating substantially from the original tract. Third, some fibers reached the pyramidal decussation normally but did not enter the dorsal funiculus. Section immunostaining combined with 3D reconstruction is a powerful method to track long projection fibers and to examine the entire nerve tracts of both normal and abnormal animals.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Tractos Piramidales/crecimiento & desarrollo , Semaforinas/fisiología , Animales , Encéfalo/citología , Ratones Noqueados , Técnicas de Trazados de Vías Neuroanatómicas , Tractos Piramidales/citología , Semaforinas/genética
11.
Data Brief ; 23: 103718, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31372387

RESUMEN

The corticospinal tract (CST) has a complex and long trajectory throughout the brain. Semaphorin 6A (Sema6A), a member of the semaphorin family, is one of the important regulators of CST axon guidance. Previous studies have shown that Sema6A knockout (KO) mice have CST defects at the midbrain-hindbrain boundary and medulla [1]. However, the route of the aberrant fibers remained unknown. Therefore here, to track the trajectory of the abnormal fibers, 3D images of the CST in adult mice were reconstructed from serial brain sections stained with anti-PKCγ antibody. Sema6A mutant brains showed CST defects that were more complex and variable than previously thought. In addition, 3D analysis helped us to identify a few new patterns of abnormal fibers. For more information about the data, please refer to an original research article, which has been recently published by Brain Research, "Remarkable complexity and variability of corticospinal tract defects in adult Semaphorin 6A knockout mice" [2].

12.
J Comp Neurol ; 527(4): 874-900, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30516281

RESUMEN

Gobiida is a basal subseries of percomorphs in teleost fishes, holding a useful position for comparisons with other orders of Percomorpha as well as other cohort of teleosts. Here, we describe a telencephalic atlas of a Gobiida species Rhinogobius flumineus (Mizuno, Memoirs of the College of Science, University of Kyoto, Series B: Biology, 1960; 27, 3), based on cytoarchitectural observations, combined with analyses of the distribution patterns of neurochemical markers and transcription factors. The telencephalon of R. flumineus shows a number of features distinct from those of other teleosts. Among others, the followings were of special note. (a) The lateral part of dorsal telencephalon (Dl), which is known as a visual center in other teleosts, is composed of as many as seven regions, some of which are conspicuous, circumscribed by cell plates. These subdivisions of the Dl can be differentiated clearly by differential soma size and color with Nissl-staining, and distribution patterns of neural markers. (b) Cell populations continuous with the ventral region of dorsal part of ventral telencephalon (vVd) exhibit extensive dimension. Especially, portion 1 of the central part of ventral telencephalon appears to represent a cell population laterally translocated from the vVd, forming a large cluster of small cells that penetrate deep into the central part of dorsal telencephalon. (c) The magnocellular subdivision of dorsal part of dorsal telencephalon (Ddmg) contains not only large cells but also vglut2a-positive clusters of small cells that cover a wide range of the caudal Ddmg. Such clusters of small cells have not been observed in the Ddmg of other teleosts.


Asunto(s)
Atlas como Asunto , Peces/anatomía & histología , Telencéfalo/citología , Animales , Biomarcadores/análisis , Transcriptoma
13.
Genetics ; 176(3): 1591-607, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17507686

RESUMEN

Semaphorins are extracellular proteins that regulate axon guidance and morphogenesis by interacting with a variety of cell surface receptors. Most semaphorins interact with plexin-containing receptor complexes, although some interact with non-plexin receptors. Class 2 semaphorins are secreted molecules that control axon guidance and epidermal morphogenesis in Drosophila and Caenorhabditis elegans. We show that the C. elegans class 2 semaphorin MAB-20 binds the plexin PLX-2. plx-2 mutations enhance the phenotypes of hypomorphic mab-20 alleles but not those of mab-20 null alleles, indicating that plx-2 and mab-20 act in a common pathway. Both mab-20 and plx-2 mutations affect epidermal morphogenesis during embryonic and in postembryonic development. In both contexts, plx-2 null mutant phenotypes are much less severe than mab-20 null phenotypes, indicating that PLX-2 is not essential for MAB-20 signaling. Mutations in the ephrin efn-4 do not synergize with mab-20, indicating that EFN-4 may act in MAB-20 signaling. EFN-4 and PLX-2 are coexpressed in the late embryonic epidermis where they play redundant roles in MAB-20-dependent cell sorting.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Moléculas de Adhesión Celular/fisiología , Efrina-A4/fisiología , Proteínas de la Membrana/metabolismo , Morfogénesis , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Semaforinas/metabolismo , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Transducción de Señal
14.
Sci Rep ; 7: 45359, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28349996

RESUMEN

Formation of cortical connections requires the precise coordination of numerous discrete phases. This is particularly significant with regard to the corpus callosum, whose development undergoes several dynamic stages including the crossing of axon projections, elimination of exuberant projections, and myelination of established tracts. To comprehensively characterize the molecular events in this dynamic process, we set to determine the distinct temporal expression of proteins regulating the formation of the corpus callosum and their respective developmental functions. Mass spectrometry-based proteomic profiling was performed on early postnatal mouse corpus callosi, for which limited evidence has been obtained previously, using stable isotope of labeled amino acids in mammals (SILAM). The analyzed corpus callosi had distinct proteomic profiles depending on age, indicating rapid progression of specific molecular events during this period. The proteomic profiles were then segregated into five separate clusters, each with distinct trajectories relevant to their intended developmental functions. Our analysis both confirms many previously-identified proteins in aspects of corpus callosum development, and identifies new candidates in understudied areas of development including callosal axon refinement. We present a valuable resource for identifying new proteins integral to corpus callosum development that will provide new insights into the development and diseases afflicting this structure.


Asunto(s)
Cuerpo Calloso/metabolismo , Proteoma/análisis , Envejecimiento , Animales , Animales Recién Nacidos , Análisis por Conglomerados , Cuerpo Calloso/crecimiento & desarrollo , Cuerpo Calloso/patología , Marcaje Isotópico , Lisina/química , Lisina/metabolismo , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
15.
J Neurosci ; 25(14): 3628-37, 2005 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-15814794

RESUMEN

It has been proposed that four members of the plexin A subfamily (plexin-As; plexin-A1, -A2, -A3, and -A4) and two neuropilins (neuropilin-1 and neuropilin-2) form complexes and serve as receptors for class 3 secreted semaphorins (Semas), potent neural chemorepellents. The roles of given plexin-As in semaphorin signaling and axon guidance, however, are mostly unknown. Here, to elucidate functions of plexin-A4 in semaphorin signaling and axon guidance events in vivo, we generated plexin-A4 null mutant mice by targeted disruption of the plexin-A4 gene. Plexin-A4 mutant mice were defective in the trajectory and projection of peripheral sensory axons and sympathetic ganglion (SG) axons and the formation of the anterior commissure and the barrels. The defects in peripheral sensory and SG axons were fundamentally related to those of neuropilin-1 or Sema3A mutant embryos reported but were more moderate than the phenotype in these mutants. The growth cone collapse assay showed that dorsal root ganglion axons and SG axons of plexin-A4 mutant embryos partially lost their responsiveness to Sema3A. These results suggest that plexin-A4 plays roles in the propagation of Sema3A activities and regulation of axon guidance and that other members of the plexin-A subfamily are also involved in the propagation of Sema3A activities. Plexin-A4-deficient SG axons did not lose their responsiveness to Sema3F, suggesting that plexin-A4 serves as a Sema3A-specific receptor, at least in SG axons. In addition, the present study showed that plexin-A4 bound class 6 transmembrane semaphorins, Sema6A and Sema6B, and mediated their axon-repulsive activities, independently of neuropilin-1. Our results imply that plexin-A4 mediates multiple semaphorin signals and regulates axon guidance in vivo.


Asunto(s)
Axones/fisiología , Fibras Nerviosas/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/citología , Receptores de Superficie Celular/fisiología , Semaforinas/metabolismo , Animales , Animales Recién Nacidos , Moléculas de Adhesión Celular Neuronal/metabolismo , Células Cultivadas , Clonación Molecular/métodos , Contactina 2 , Relación Dosis-Respuesta a Droga , Complejo IV de Transporte de Electrones/metabolismo , Embrión de Mamíferos , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Inmunohistoquímica/métodos , Hibridación in Situ/métodos , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Neuritas/metabolismo , Neuronas/metabolismo , Neuropilina-1/metabolismo , Prosencéfalo/embriología , Prosencéfalo/metabolismo , Receptores de Superficie Celular/deficiencia , Proteínas Recombinantes/metabolismo , Semaforinas/farmacocinética , Sistema Nervioso Simpático/metabolismo , Tubulina (Proteína)/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
16.
Mech Dev ; 120(3): 385-96, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12591607

RESUMEN

Plexins belonging to the plexin-A subfamily form complexes with neuropilins and propagate signals of class 3 semaphorins into neurons, even though they do not directly bind the semaphorins. In this study, we identified a new member of the plexin-A subfamily in the mice, plexin-A4, and showed that it was expressed in the developing nervous system with a pattern different to that of other members of the plexin-A subfamily (plexin-A1, plexin-A2 and plexin-A3). COS-7 cells coexpressing plexin-A4 with neuropilin-1 were induced to contract by Sema3A, a member of the class 3 semaphorin. Ectopic expression of plexin-A4 in mitral cells that are originally insensitive to Sema3A resulted in the collapse of growth cones in the presence of Sema3A. These results suggest that plexin-A4 plays a role in the propagation of Sema3A activities.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Sistema Nervioso/embriología , Receptores de Superficie Celular/genética , Semaforina-3A , Secuencia de Aminoácidos , Animales , Axones/metabolismo , Encéfalo/embriología , Encéfalo/metabolismo , Células COS , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Clonación Molecular , Ganglios/embriología , Ganglios Sensoriales/embriología , Conos de Crecimiento/metabolismo , Ratones , Ratones Endogámicos ICR , Datos de Secuencia Molecular , Familia de Multigenes , Mutación , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/crecimiento & desarrollo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Bulbo Olfatorio/citología , Bulbo Olfatorio/embriología , Órgano Espiral/crecimiento & desarrollo , Receptores de Superficie Celular/metabolismo , Retina/crecimiento & desarrollo
17.
Biol Open ; 4(9): 1194-205, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26319580

RESUMEN

The development of a patterned lymphatic vascular network is essential for proper lymphatic functions during organ development and homeostasis. Here we report that class 3 semaphorins (SEMA3s), SEMA3F and SEMA3G negatively regulate lymphatic endothelial cell (LEC) growth and sprouting to control dermal lymphatic network formation. Neuropilin2 (NRP2) functions as a receptor for SEMA3F and SEMA3G, as well as vascular endothelial growth factor C (VEGFC). In culture, Both SEMA3F and SEMA3G inhibit VEGFC-mediated sprouting and proliferation of human dermal LECs. In the developing mouse skin, Sema3f is expressed in the epidermis and Sema3g expression is restricted to arteries, whereas their receptor Nrp2 is preferentially expressed by lymphatic vessels. Both Sema3f;Sema3g double mutants and Nrp2 mutants exhibit increased LEC growth in the skin. In contrast, Sema3f;Sema3g double mutants display increased lymphatic branching, while Nrp2 mutants exhibit reduced lymphatic branching. A targeted mutation in PlexinA1 or PlexinA2, signal transducers forming a receptor complex with NRP2 for SEMA3s, exhibits an increase in LEC growth and lymphatic branching as observed in Sema3f;Sema3g double mutants. Our results provide the first evidence that SEMA3F and SEMA3G function as a negative regulator for dermal lymphangiogenesis in vivo. The reciprocal phenotype in lymphatic branching between Sema3f;Sema3g double mutants and Nrp2 mutants suggest a complex NRP2 function that regulates LEC behavior both positively and negatively, through a binding with VEGFC or SEMA3s.

18.
Nat Commun ; 5: 3424, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24599038

RESUMEN

The dendritic targeting of neurotransmitter receptors is vital for dendritic development and function. However, how such localization is established remains unclear. Here we show that semaphorin 3A (Sema3A) signalling at the axonal growth cone is propagated towards the cell body by retrograde axonal transport and drives AMPA receptor GluA2 to the distal dendrites, which regulates dendritic development. Sema3A enhances glutamate receptor interacting protein 1-dependent localization of GluA2 in dendrites, which is blocked by knockdown of cytoplasmic dynein heavy chain. PlexinA (PlexA), a receptor component for Sema3A, interacts with GluA2 at the immunoglobulin-like Plexin-transcription-factor domain (PlexA-IPT) in somatodendritic regions. Overexpression of PlexA-IPT suppresses dendritic localization of GluA2 and induces aproximal bifurcation phenotype in the apical dendrites of CA1 hippocampal neurons. Thus, we propose a control mechanism by which retrograde Sema3A signalling regulates the glutamate receptor localization through trafficking of cis-interacting PlexA with GluA2 along dendrites.


Asunto(s)
Dendritas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores AMPA/metabolismo , Receptores de Superficie Celular/metabolismo , Semaforina-3A/metabolismo , Transducción de Señal , Animales , Axones/metabolismo , Western Blotting , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/embriología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Cultivadas , Femenino , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Microscopía Confocal , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/metabolismo , Interferencia de ARN , Ratas , Ratas Wistar , Receptores AMPA/genética , Receptores de Superficie Celular/genética , Semaforina-3A/genética , Imagen de Lapso de Tiempo/métodos
20.
PLoS One ; 8(8): e72512, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23991118

RESUMEN

Statoacoustic ganglion (SAG) neurons project sensory afferents to appropriate targets in the inner ear to form functional vestibular and auditory circuits. Neuropilin1 (Npn1), a receptor for class 3 semaphorins, is required to generate appropriate afferent projections in SAG neurons; however, the ligands and coreceptors involved in Npn1 functioning remain unknown. Here we show that both plexinA1 and plexinA3 are expressed by SAG neurons, and plexinA1/plexinA3 double mutant mice show defects in afferent projections of SAG neurons in the inner ear. In control mice, sensory afferents of SAG neurons terminate at the vestibular sensory patches, whereas in plexinA1/plexinA3 double mutants, they extend more dorsally in the inner ear beyond normal vestibular target areas. Moreover, we find that semaphorin3a (Sema3a) is expressed in the dorsal otocyst, and Sema3a mutant mice show defects in afferent projections of SAG neurons similar to those observed in plexinA1/plexinA3 double mutants and in mice lacking a functional Npn1 receptor. Taken together, these genetic findings demonstrate that Sema3a repellent signaling plays a role in the establishment of proper afferent projections in SAG neurons, and this signaling likely occurs through a receptor complex involving Npn1 and either plexinA1 or plexinA3.


Asunto(s)
Ganglios/fisiología , Eliminación de Gen , Proteínas del Tejido Nervioso/genética , Neuronas Aferentes/fisiología , Receptores de Superficie Celular/genética , Semaforina-3A/genética , Animales , Secuencia de Bases , Cartilla de ADN , Oído Interno/embriología , Ganglios/citología , Ganglios/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Mutantes , Neuronas Aferentes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA