Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Trends Biochem Sci ; 49(9): 819-828, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38789305

RESUMEN

Cyanobacteria uniquely contain a primitive water-soluble carotenoprotein, the orange carotenoid protein (OCP). Nearly all extant cyanobacterial genomes contain genes for the OCP or its homologs, implying an evolutionary constraint for cyanobacteria to conserve its function. Genes encoding the OCP and its two constituent structural domains, the N-terminal domain, helical carotenoid proteins (HCPs), and its C-terminal domain, are found in the most basal lineages of extant cyanobacteria. These three carotenoproteins exemplify the importance of the protein for carotenoid properties, including protein dynamics, in response to environmental changes in facilitating a photoresponse and energy quenching. Here, we review new structural insights for these carotenoproteins and situate the role of the protein in what is currently understood about their functions.


Asunto(s)
Proteínas Bacterianas , Carotenoides , Cianobacterias , Evolución Molecular , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cianobacterias/metabolismo , Cianobacterias/química , Cianobacterias/genética , Carotenoides/metabolismo , Carotenoides/química
2.
Nature ; 609(7928): 835-845, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36045294

RESUMEN

Phycobilisome (PBS) structures are elaborate antennae in cyanobacteria and red algae1,2. These large protein complexes capture incident sunlight and transfer the energy through a network of embedded pigment molecules called bilins to the photosynthetic reaction centres. However, light harvesting must also be balanced against the risks of photodamage. A known mode of photoprotection is mediated by orange carotenoid protein (OCP), which binds to PBS when light intensities are high to mediate photoprotective, non-photochemical quenching3-6. Here we use cryogenic electron microscopy to solve four structures of the 6.2 MDa PBS, with and without OCP bound, from the model cyanobacterium Synechocystis sp. PCC 6803. The structures contain a previously undescribed linker protein that binds to the membrane-facing side of PBS. For the unquenched PBS, the structures also reveal three different conformational states of the antenna, two previously unknown. The conformational states result from positional switching of two of the rods and may constitute a new mode of regulation of light harvesting. Only one of the three PBS conformations can bind to OCP, which suggests that not every PBS is equally susceptible to non-photochemical quenching. In the OCP-PBS complex, quenching is achieved through the binding of four 34 kDa OCPs organized as two dimers. The complex reveals the structure of the active form of OCP, in which an approximately 60 Å displacement of its regulatory carboxy terminal domain occurs. Finally, by combining our structure with spectroscopic properties7, we elucidate energy transfer pathways within PBS in both the quenched and light-harvesting states. Collectively, our results provide detailed insights into the biophysical underpinnings of the control of cyanobacterial light harvesting. The data also have implications for bioengineering PBS regulation in natural and artificial light-harvesting systems.


Asunto(s)
Ficobilisomas , Luz Solar , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Transferencia de Energía/efectos de la radiación , Fotosíntesis/efectos de la radiación , Ficobilisomas/química , Ficobilisomas/metabolismo , Ficobilisomas/efectos de la radiación , Synechocystis/metabolismo , Synechocystis/efectos de la radiación
3.
Plant Physiol ; 194(3): 1383-1396, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-37972281

RESUMEN

Photosynthetic organisms harvest light using pigment-protein complexes. In cyanobacteria, these are water-soluble antennae known as phycobilisomes (PBSs). The light absorbed by PBS is transferred to the photosystems in the thylakoid membrane to drive photosynthesis. The energy transfer between these complexes implies that protein-protein interactions allow the association of PBS with the photosystems. However, the specific proteins involved in the interaction of PBS with the photosystems are not fully characterized. Here, we show in Synechocystis sp. PCC 6803 that the recently discovered PBS linker protein ApcG (sll1873) interacts specifically with PSII through its N-terminal region. Growth of cyanobacteria is impaired in apcG deletion strains under light-limiting conditions. Furthermore, complementation of these strains using a phospho-mimicking version of ApcG causes reduced growth under normal growth conditions. Interestingly, the interaction of ApcG with PSII is affected when a phospho-mimicking version of ApcG is used, targeting the positively charged residues interacting with the thylakoid membrane, suggesting a regulatory role mediated by phosphorylation of ApcG. Low-temperature fluorescence measurements showed decreased PSI fluorescence in apcG deletion and complementation strains. The PSI fluorescence was the lowest in the phospho-mimicking complementation strain, while the pull-down experiment showed no interaction of ApcG with PSI under any tested condition. Our results highlight the importance of ApcG for selectively directing energy harvested by the PBS and imply that the phosphorylation status of ApcG plays a role in regulating energy transfer from PSII to PSI.


Asunto(s)
Synechocystis , Synechocystis/metabolismo , Ficobilisomas/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Transferencia de Energía/fisiología
4.
Plant Physiol ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39365917

RESUMEN

Stress exerted by excess captured light energy in cyanobacteria is prevented by the photoprotective activity of the orange carotenoid protein (OCP). Under high light, the OCP converts from an orange, inactive form (OCPO) into the red form (OCPR) that binds to and quenches the phycobilisome (PBS). Structurally, the OCP consists of two domains: the N-terminal effector domain and a C-terminal regulatory domain. Structural analysis of the OCP-PBS complex showed that the N-terminal domains of an OCP dimer interact with the PBS core. These N-terminal OCP domains have single domain protein paralogs known as Helical Carotenoid Proteins (HCPs). Using phycobilisome quenching assays, we show that the HCP4 and HCP5 homologs efficiently quench PBS fluorescence in vitro, surpassing the quenching ability of the OCP. This is consistent with computational quantum mechanics/molecular mechanics results. Interestingly, when using a maximum quenching concentration of OCP with phycobilisomes, HCP5 addition further increases phycobilisome quenching. Our results provide mechanistic insight into the quenching capacity and roles of HCP4 and HCP5 in cyanobacteria, suggesting that they are more than simply functionally redundant to the OCP.

5.
Phys Chem Chem Phys ; 25(48): 33000-33012, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38032096

RESUMEN

The orange carotenoid protein (OCP) functions as a sensor of the ambient light intensity and as a quencher of bilin excitons when it binds to the core of the cyanobacterial phycobilisome. We show herein that the photoactivation mechanism that converts the resting, orange-colored state, OCPO, to the active red-colored state, OCPR, requires a sequence of two reactions, each requiring absorption of a single photon by an intrinsic ketocarotenoid chromophore. Global analysis of absorption spectra recorded during continuous illumination of OCPO preparations from Synechocystis sp. PCC 6803 detects the reversible formation of a metastable intermediate, OCPI, in which the ketocarotenoid canthaxanthin exhibits an absorption spectrum with a partial red shift and a broadened vibronic structure compared to that of the OCPO state. While the dark recovery from OCPR to OCPI is a first-order, unimolecular reaction, the subsequent conversion of OCPI to the resting OCPO state is bimolecular, involving association of two OCPO monomers to form the dark-stable OCPO dimer aggregate. These results indicate that photodissociation of the OCPO dimer to form the monomeric OCPO intermediate is the first step in the photoactivation mechanism. Formation of the OCPO monomer from the dimer increases the mean value and broadens the distribution of the solvent-accessible surface area of the canthaxanthin chromophore measured in molecular dynamics trajectories at 300 K. The second step in the photoactivation mechanism is initiated by absorption of a second photon, by canthaxanthin in the OCPO monomer, which obtains the fully red-shifted and broadened absorption spectrum detected in the OCPR product state owing to displacement of the C-terminal domain and the translocation of canthaxanthin more than 12 Å into the N-terminal domain. Both steps in the photoactivation reaction of OCP are likely to involve changes in the structure of the C-terminal domain elicited by excited-state conformational motions of the ketocarotenoid.


Asunto(s)
Proteínas Bacterianas , Synechocystis , Proteínas Bacterianas/química , Cantaxantina , Luz , Synechocystis/metabolismo , Carotenoides/química
6.
J Biol Chem ; 294(22): 8848-8860, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-30979724

RESUMEN

In cyanobacterial photoprotection, the orange carotenoid protein (OCP) is photoactivated under excess light conditions and binds to the light-harvesting antenna, triggering the dissipation of captured light energy. In low light, the OCP relaxes to the native state, a process that is accelerated in the presence of fluorescence recovery protein (FRP). Despite the importance of the OCP in photoprotection, the precise mechanism of photoactivation by this protein is not well-understood. Using time-resolved X-ray-mediated in situ hydroxyl radical labeling, we probed real-time solvent accessibility (SA) changes at key OCP residues during photoactivation and relaxation. We observed a biphasic photoactivation process in which carotenoid migration preceded domain dissociation. We also observed a multiphasic relaxation process, with collapsed domain association preceding the final conformational rearrangement of the carotenoid. Using steady-state hydroxyl radical labeling, we identified sites of interaction between the FRP and OCP. In combination, the findings in this study provide molecular-level insights into the factors driving structural changes during OCP-mediated photoprotection in cyanobacteria, and furnish a basis for understanding the physiological relevance of the FRP-mediated relaxation process.


Asunto(s)
Proteínas Bacterianas/metabolismo , Carotenoides/metabolismo , Proteínas Bacterianas/química , Carotenoides/química , Cianobacterias/metabolismo , Radical Hidroxilo/química , Simulación del Acoplamiento Molecular , Estructura Terciaria de Proteína , Rayos X
7.
Plant Physiol ; 181(3): 1050-1058, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31501298

RESUMEN

Carboxysomes are capsid-like, CO2-fixing organelles that are present in all cyanobacteria and some chemoautotrophs and that substantially contribute to global primary production. They are composed of a selectively permeable protein shell that encapsulates Rubisco, the principal CO2-fixing enzyme, and carbonic anhydrase. As the centerpiece of the carbon-concentrating mechanism, by packaging enzymes that collectively enhance catalysis, the carboxysome shell enables the generation of a locally elevated concentration of substrate CO2 and the prevention of CO2 escape. A functional carboxysome consisting of an intact shell and cargo is essential for cyanobacterial growth under ambient CO2 concentrations. Using cryo-electron microscopy, we have determined the structure of a recombinantly produced simplified ß-carboxysome shell. The structure reveals the sidedness and the specific interactions between the carboxysome shell proteins. The model provides insight into the structural basis of selective permeability of the carboxysome shell and can be used to design modifications to investigate the mechanisms of cargo encapsulation and other physiochemical properties such as permeability. Notably, the permeability properties are of great interest for modeling and evaluating this carbon-concentrating mechanism in metabolic engineering. Moreover, we find striking similarity between the carboxysome shell and the structurally characterized, evolutionarily distant metabolosome shell, implying universal architectural principles for bacterial microcompartment shells.


Asunto(s)
Microscopía por Crioelectrón/métodos , Orgánulos/ultraestructura , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Anhidrasas Carbónicas/metabolismo , Cromatografía por Intercambio Iónico , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/ultraestructura , Orgánulos/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Ribulosa-Bifosfato Carboxilasa/ultraestructura , Synechococcus/metabolismo , Synechococcus/ultraestructura
8.
Plant Physiol ; 179(1): 156-167, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30389783

RESUMEN

Bacterial microcompartments (BMCs) encapsulate enzymes within a selectively permeable, proteinaceous shell. Carboxysomes are BMCs containing ribulose-1,5-bisphosphate carboxylase oxygenase and carbonic anhydrase that enhance carbon dioxide fixation. The carboxysome shell consists of three structurally characterized protein types, each named after the oligomer they form: BMC-H (hexamer), BMC-P (pentamer), and BMC-T (trimer). These three protein types form cyclic homooligomers with pores at the center of symmetry that enable metabolite transport across the shell. Carboxysome shells contain multiple BMC-H paralogs, each with distinctly conserved residues surrounding the pore, which are assumed to be associated with specific metabolites. We studied the regulation of ß-carboxysome shell composition by investigating the BMC-H genes ccmK3 and ccmK4 situated in a locus remote from other carboxysome genes. We made single and double deletion mutants of ccmK3 and ccmK4 in Synechococcus elongatus PCC7942 and show that, unlike CcmK3, CcmK4 is necessary for optimal growth. In contrast to other CcmK proteins, CcmK3 does not form homohexamers; instead CcmK3 forms heterohexamers with CcmK4 with a 1:2 stoichiometry. The CcmK3-CcmK4 heterohexamers form stacked dodecamers in a pH-dependent manner. Our results indicate that CcmK3-CcmK4 heterohexamers potentially expand the range of permeability properties of metabolite channels in carboxysome shells. Moreover, the observed facultative formation of dodecamers in solution suggests that carboxysome shell permeability may be dynamically attenuated by "capping" facet-embedded hexamers with a second hexamer. Because ß-carboxysomes are obligately expressed, heterohexamer formation and capping could provide a rapid and reversible means to alter metabolite flux across the shell in response to environmental/growth conditions.


Asunto(s)
Proteínas Bacterianas/fisiología , Synechococcus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Eliminación de Gen , Modelos Moleculares , Simulación de Dinámica Molecular , Permeabilidad , Synechococcus/genética
9.
Metab Eng ; 54: 286-291, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31075444

RESUMEN

Microbes often augment their metabolism by conditionally constructing proteinaceous organelles, known as bacterial microcompartments (BMCs), that encapsulate enzymes to degrade organic compounds or assimilate CO2. BMCs self-assemble and are spatially delimited by a semi-permeable shell made up of hexameric, trimeric, and pentameric shell proteins. Bioengineers aim to recapitulate the organization and efficiency of these complex biological architectures by redesigning the shell to incorporate non-native enzymes from biotechnologically relevant pathways. To meet this challenge, a diverse set of synthetic biology tools are required, including methods to manipulate the properties of the shell as well as target and organize cargo encapsulation. We designed and determined the crystal structure of a synthetic shell protein building block with an inverted sidedness of its N- and C-terminal residues relative to its natural counterpart; the inversion targets genetically fused protein cargo to the lumen of the shell. Moreover, the titer of fluorescent protein cargo encapsulated using this strategy is controllable using an inducible tetracycline promoter. These results expand the available set of building blocks for precision engineering of BMC-based nanoreactors and are compatible with orthogonal methods which will facilitate the installation and organization of multi-enzyme pathways.


Asunto(s)
Bacterias , Proteínas Bacterianas , Biotecnología , Biología Sintética , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
10.
PLoS Biol ; 14(3): e1002399, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26959993

RESUMEN

Bacterial Microcompartments (BMCs) are proteinaceous organelles that encapsulate critical segments of autotrophic and heterotrophic metabolic pathways; they are functionally diverse and are found across 23 different phyla. The majority of catabolic BMCs (metabolosomes) compartmentalize a common core of enzymes to metabolize compounds via a toxic and/or volatile aldehyde intermediate. The core enzyme phosphotransacylase (PTAC) recycles Coenzyme A and generates an acyl phosphate that can serve as an energy source. The PTAC predominantly associated with metabolosomes (PduL) has no sequence homology to the PTAC ubiquitous among fermentative bacteria (Pta). Here, we report two high-resolution PduL crystal structures with bound substrates. The PduL fold is unrelated to that of Pta; it contains a dimetal active site involved in a catalytic mechanism distinct from that of the housekeeping PTAC. Accordingly, PduL and Pta exemplify functional, but not structural, convergent evolution. The PduL structure, in the context of the catalytic core, completes our understanding of the structural basis of cofactor recycling in the metabolosome lumen.


Asunto(s)
Estructuras Bacterianas/enzimología , Coenzima A/metabolismo , Fosfato Acetiltransferasa/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Datos de Secuencia Molecular , Conformación Proteica , Salmonella enterica
11.
Biochemistry ; 56(42): 5679-5690, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-28956602

RESUMEN

Bacterial microcompartments (BMCs) are proteinaceous organelles that encapsulate enzymes involved in CO2 fixation (carboxysomes) or carbon catabolism (metabolosomes). Metabolosomes share a common core of enzymes and a distinct signature enzyme for substrate degradation that defines the function of the BMC (e.g., propanediol or ethanolamine utilization BMCs, or glycyl-radical enzyme microcompartments). Loci encoding metabolosomes also typically contain genes for proteins that support organelle function, such as regulation, transport of substrate, and cofactor (e.g., vitamin B12) synthesis and recycling. Flavoproteins are frequently among these ancillary gene products, suggesting that these redox active proteins play an undetermined function in many metabolosomes. Here, we report the first characterization of a BMC-associated flavodoxin (Fld1C), a small flavoprotein, derived from the noncanonical 1,2-propanediol utilization BMC locus (PDU1C) of Lactobacillus reuteri. The 2.0 Å X-ray structure of Fld1C displays the α/ß flavodoxin fold, which noncovalently binds a single flavin mononucleotide molecule. Fld1C is a short-chain flavodoxin with redox potentials of -240 ± 3 mV oxidized/semiquinone and -344 ± 1 mV semiquinone/hydroquinone versus the standard hydrogen electrode at pH 7.5. It can participate in an electron transfer reaction with a photoreductant to form a stable semiquinone species. Collectively, our structural and functional results suggest that PDU1C BMCs encapsulate Fld1C to store and transfer electrons for the reactivation and/or recycling of the B12 cofactor utilized by the signature enzyme.


Asunto(s)
Cobamidas/química , Mononucleótido de Flavina/química , Flavodoxina/química , Limosilactobacillus reuteri/química , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Cobamidas/metabolismo , Mononucleótido de Flavina/metabolismo , Flavodoxina/metabolismo , Limosilactobacillus reuteri/metabolismo
12.
New Phytol ; 215(3): 937-951, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28675536

RESUMEN

Contents 937 I. 937 II. 938 III. 939 IV. 943 V. 947 VI. 948 948 References 949 SUMMARY: The orange carotenoid protein (OCP) is a water-soluble, photoactive protein involved in thermal dissipation of excess energy absorbed by the light-harvesting phycobilisomes (PBS) in cyanobacteria. The OCP is structurally and functionally modular, consisting of a sensor domain, an effector domain and a keto-carotenoid. On photoactivation, the OCP converts from a stable orange form, OCPO , to a red form, OCPR . Activation is accompanied by a translocation of the carotenoid deeper into the effector domain. The increasing availability of cyanobacterial genomes has enabled the identification of new OCP families (OCP1, OCP2, OCPX). The fluorescence recovery protein (FRP) detaches OCP1 from the PBS core, accelerating its back-conversion to OCPO ; by contrast, other OCP families are not regulated by FRP. N-terminal domain homologs, the helical carotenoid proteins (HCPs), have been found among diverse cyanobacteria, occurring as multiple paralogous groups, with two representatives exhibiting strong singlet oxygen (1 O2 ) quenching (HCP2, HCP3) and another capable of dissipating PBS excitation (HCP4). Crystal structures are presently available for OCP1 and HCP1, and models of other HCP subtypes can be readily produced as a result of strong sequence conservation, providing new insights into the determinants of carotenoid binding and 1 O2 quenching.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Evolución Molecular , Homología Estructural de Proteína , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Carotenoides/química , Carotenoides/metabolismo
13.
Plant Physiol ; 171(3): 1852-66, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27208286

RESUMEN

The photoactive Orange Carotenoid Protein (OCP) is involved in cyanobacterial photoprotection. Its N-terminal domain (NTD) is responsible for interaction with the antenna and induction of excitation energy quenching, while the C-terminal domain is the regulatory domain that senses light and induces photoactivation. In most nitrogen-fixing cyanobacterial strains, there are one to four paralogous genes coding for homologs to the NTD of the OCP. The functions of these proteins are unknown. Here, we study the expression, localization, and function of these genes in Anabaena sp. PCC 7120. We show that the four genes present in the genome are expressed in both vegetative cells and heterocysts but do not seem to have an essential role in heterocyst formation. This study establishes that all four Anabaena NTD-like proteins can bind a carotenoid and the different paralogs have distinct functions. Surprisingly, only one paralog (All4941) was able to interact with the antenna and to induce permanent thermal energy dissipation. Two of the other Anabaena paralogs (All3221 and Alr4783) were shown to be very good singlet oxygen quenchers. The fourth paralog (All1123) does not seem to be involved in photoprotection. Structural homology modeling allowed us to propose specific features responsible for the different functions of these soluble carotenoid-binding proteins.


Asunto(s)
Anabaena/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Anabaena/genética , Proteínas Bacterianas/química , Carotenoides/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/genética , Fluorescencia , Regulación Bacteriana de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ficobilisomas/química , Ficobilisomas/metabolismo , Dominios Proteicos
14.
Nano Lett ; 16(3): 1590-5, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26617073

RESUMEN

Bacterial microcompartments (BMCs) are proteinaceous organelles widespread among bacterial phyla. They compartmentalize enzymes within a selectively permeable shell and play important roles in CO2 fixation, pathogenesis, and microbial ecology. Here, we combine X-ray crystallography and high-speed atomic force microscopy to characterize, at molecular resolution, the structure and dynamics of BMC shell facet assembly. Our results show that preformed hexamers assemble into uniformly oriented shell layers, a single hexamer thick. We also observe the dynamic process of shell facet assembly. Shell hexamers can dissociate from and incorporate into assembled sheets, indicating a flexible intermolecular interaction. Furthermore, we demonstrate that the self-assembly and dynamics of shell proteins are governed by specific contacts at the interfaces of shell proteins. Our study provides novel insights into the formation, interactions, and dynamics of BMC shell facets, which are essential for the design and engineering of self-assembled biological nanoreactors and scaffolds based on BMC architectures.


Asunto(s)
Proteínas Bacterianas/ultraestructura , Microscopía de Fuerza Atómica/métodos , Myxococcales/citología , Proteínas Bacterianas/análisis , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Myxococcales/genética , Myxococcales/ultraestructura , Mutación Puntual , Conformación Proteica
15.
J Am Chem Soc ; 138(16): 5262-70, 2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-26704697

RESUMEN

Bacterial microcompartments (BMCs) are self-assembling organelles composed of a selectively permeable protein shell and encapsulated enzymes. They are considered promising templates for the engineering of designed bionanoreactors for biotechnology. In particular, encapsulation of oxidoreductive reactions requiring electron transfer between the lumen of the BMC and the cytosol relies on the ability to conduct electrons across the shell. We determined the crystal structure of a component protein of a synthetic BMC shell, which informed the rational design of a [4Fe-4S] cluster-binding site in its pore. We also solved the structure of the [4Fe-4S] cluster-bound, engineered protein to 1.8 Å resolution, providing the first structure of a BMC shell protein containing a metal center. The [4Fe-4S] cluster was characterized by optical and EPR spectroscopies; it has a reduction potential of -370 mV vs the standard hydrogen electrode (SHE) and is stable through redox cycling. This remarkable stability may be attributable to the hydrogen-bonding network provided by the main chain of the protein scaffold. The properties of the [4Fe-4S] cluster resemble those in low-potential bacterial ferredoxins, while its ligation to three cysteine residues is reminiscent of enzymes such as aconitase and radical S-adenosymethionine (SAM) enzymes. This engineered shell protein provides the foundation for conferring electron-transfer functionality to BMC shells.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Cisteína/química , Espectroscopía de Resonancia por Spin del Electrón , Proteínas Hierro-Azufre/química , Oxidación-Reducción
16.
Proc Natl Acad Sci U S A ; 110(24): 10022-7, 2013 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-23716688

RESUMEN

Photosynthetic reaction centers are sensitive to high light conditions, which can cause damage because of the formation of reactive oxygen species. To prevent high-light induced damage, cyanobacteria have developed photoprotective mechanisms. One involves a photoactive carotenoid protein that decreases the transfer of excess energy to the reaction centers. This protein, the orange carotenoid protein (OCP), is present in most cyanobacterial strains; it is activated by high light conditions and able to dissipate excess energy at the site of the light-harvesting antennae, the phycobilisomes. Restoration of normal antenna capacity involves the fluorescence recovery protein (FRP). The FRP acts to dissociate the OCP from the phycobilisomes by accelerating the conversion of the active red OCP to the inactive orange form. We have determined the 3D crystal structure of the FRP at 2.5 Å resolution. Remarkably, the FRP is found in two very different conformational and oligomeric states in the same crystal. Based on amino acid conservation analysis, activity assays of FRP mutants, FRP:OCP docking simulations, and coimmunoprecipitation experiments, we conclude that the dimer is the active form. The second form, a tetramer, may be an inactive form of FRP. In addition, we have identified a surface patch of highly conserved residues and shown that those residues are essential to FRP activity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Cianobacterias/efectos de la radiación , Luz , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Cristalografía por Rayos X , Cianobacterias/genética , Electroforesis en Gel de Poliacrilamida , Transferencia de Energía/efectos de la radiación , Modelos Moleculares , Mutación , Ficobilisomas/metabolismo , Ficobilisomas/efectos de la radiación , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Synechocystis/genética , Synechocystis/metabolismo , Synechocystis/efectos de la radiación
17.
J Biol Chem ; 288(22): 16055-63, 2013 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-23572529

RESUMEN

The carboxysome is a bacterial organelle found in all cyanobacteria; it encapsulates CO2 fixation enzymes within a protein shell. The most abundant carboxysome shell protein contains a single bacterial microcompartment (BMC) domain. We present in vivo evidence that a hypothetical protein (dubbed CcmP) encoded in all ß-cyanobacterial genomes is part of the carboxysome. We show that CcmP is a tandem BMC domain protein, the first to be structurally characterized from a ß-carboxysome. CcmP forms a dimer of tightly stacked trimers, resulting in a nanocompartment-containing shell protein that may weakly bind 3-phosphoglycerate, the product of CO2 fixation. The trimers have a large central pore through which metabolites presumably pass into the carboxysome. Conserved residues surrounding the pore have alternate side-chain conformations suggesting that it can be open or closed. Furthermore, CcmP and its orthologs in α-cyanobacterial genomes form a distinct clade of shell proteins. Members of this subgroup are also found in numerous heterotrophic BMC-associated gene clusters encoding functionally diverse bacterial organelles, suggesting that the potential to form a nanocompartment within a microcompartment shell is widespread. Given that carboxysomes and architecturally related bacterial organelles are the subject of intense interest for applications in synthetic biology/metabolic engineering, our results describe a new type of building block with which to functionalize BMC shells.


Asunto(s)
Proteínas Bacterianas/química , Multimerización de Proteína/fisiología , Synechococcus/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genoma Bacteriano/fisiología , Ácidos Glicéricos/química , Ácidos Glicéricos/metabolismo , Familia de Multigenes/fisiología , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Synechococcus/genética , Synechococcus/metabolismo
18.
Front Microbiol ; 15: 1393362, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650886

RESUMEN

[This corrects the article DOI: 10.3389/fmicb.2022.872708.].

19.
J Phys Chem Lett ; 15(31): 8000-8006, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39079038

RESUMEN

Bacterial microcompartments (BMCs) are self-assembling, selectively permeable protein shells that encapsulate enzymes to enhance catalytic efficiency of segments of metabolic pathways through means of confinement. The modular nature of BMC shells' structure and assembly enables programming of shell permeability and underscores their promise in biotechnology engineering efforts for applications in industry, medicine, and clean energy. Realizing this potential requires methods for encapsulation of abiotic molecules, which have been developed here for the first time. We report in vitro cargo loading of BMC shells with ruthenium photosensitizers (RuPS) by two approaches─one involving site-specific covalent labeling and the other driven by diffusion, requiring no specific interactions between cargo molecules and shell proteins. The highly stable shells retain encapsulated cargo over 1 week without egress and preserve RuPS photophysical activity. This study is an important foundation for further work that will converge biological BMC architecture with synthetic chemistry to facilitate biohybrid photocatalysis.


Asunto(s)
Fármacos Fotosensibilizantes , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/metabolismo , Rutenio/química
20.
bioRxiv ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39071365

RESUMEN

Bacterial microcompartments (BMCs) are prokaryotic organelles that consist of a protein shell which sequesters metabolic reactions in its interior. While most of the substrates and products are relatively small and can permeate the shell, many of the encapsulated enzymes require cofactors that must be regenerated inside. We have analyzed the occurrence of an enzyme previously assigned as a cobalamin (vitamin B12) reductase and, curiously, found it in many unrelated BMC types that do not employ B12 cofactors. We propose NAD+ regeneration as a new function of this enzyme and name it MNdh, for Metabolosome NADH dehydrogenase. Its partner shell protein BMC-TSE assists in passing the generated electrons to the outside. We support this hypothesis with bioinformatic analysis, functional assays, EPR spectroscopy, protein voltammetry and structural modeling verified with X-ray footprinting. This discovery represents a new paradigm for the BMC field, identifying a new, widely occurring route for cofactor recycling and a new function for the shell as separating redox environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA