Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(10): 2359-2364, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29463713

RESUMEN

The ß-barrel assembly machine (Bam) complex folds and inserts integral membrane proteins into the outer membrane of Gram-negative bacteria. The two essential components of the complex, BamA and BamD, both interact with substrates, but how the two coordinate with each other during assembly is not clear. To elucidate aspects of this process we slowed the assembly of an essential ß-barrel substrate of the Bam complex, LptD, by changing a conserved residue near the C terminus. This defective substrate is recruited to the Bam complex via BamD but is unable to integrate into the membrane efficiently. Changes in the extracellular loops of BamA partially restore assembly kinetics, implying that BamA fails to engage this defective substrate. We conclude that substrate binding to BamD activates BamA by regulating extracellular loop interactions for folding and membrane integration.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Cinética , Modelos Moleculares , Periplasma/química , Periplasma/metabolismo , Unión Proteica , Conformación Proteica , Pliegue de Proteína
2.
Proc Natl Acad Sci U S A ; 113(11): E1565-74, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26929379

RESUMEN

Gram-negative bacteria balance synthesis of the outer membrane (OM), cell wall, and cytoplasmic contents during growth via unknown mechanisms. Here, we show that a dominant mutation (designated mlaA*, maintenance of lipid asymmetry) that alters MlaA, a lipoprotein that removes phospholipids from the outer leaflet of the OM of Escherichia coli, increases OM permeability, lipopolysaccharide levels, drug sensitivity, and cell death in stationary phase. Surprisingly, single-cell imaging revealed that death occurs after protracted loss of OM material through vesiculation and blebbing at cell-division sites and compensatory shrinkage of the inner membrane, eventually resulting in rupture and slow leakage of cytoplasmic contents. The death of mlaA* cells was linked to fatty acid depletion and was not affected by membrane depolarization, suggesting that lipids flow from the inner membrane to the OM in an energy-independent manner. Suppressor analysis suggested that the dominant mlaA* mutation activates phospholipase A, resulting in increased levels of lipopolysaccharide and OM vesiculation that ultimately undermine the integrity of the cell envelope by depleting the inner membrane of phospholipids. This novel cell-death pathway suggests that balanced synthesis across both membranes is key to the mechanical integrity of the Gram-negative cell envelope.


Asunto(s)
Pared Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Metabolismo de los Lípidos/genética , Fosfolípidos/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Escherichia coli/citología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Ácidos Grasos/metabolismo , Lipopolisacáridos/metabolismo , Magnesio/metabolismo , Magnesio/farmacología , Mutación , Permeabilidad , Fosfolipasas A1/metabolismo
3.
Proc Natl Acad Sci U S A ; 113(31): 8717-22, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27439868

RESUMEN

The assembly of ß-barrel proteins into membranes is mediated by an evolutionarily conserved machine. This process is poorly understood because no stable partially folded barrel substrates have been characterized. Here, we slowed the folding of the Escherichia coli ß-barrel protein, LptD, with its lipoprotein plug, LptE. We identified a late-stage intermediate in which LptD is folded around LptE, and both components interact with the two essential ß-barrel assembly machine (Bam) components, BamA and BamD. We propose a model in which BamA and BamD act in concert to catalyze folding, with the final step in the process involving closure of the ends of the barrel with release from the Bam components. Because BamD and LptE are both soluble proteins, the simplest model consistent with these findings is that barrel folding by the Bam complex begins in the periplasm at the membrane interface.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Pliegue de Proteína
4.
J Bacteriol ; 199(20)2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28784813

RESUMEN

Outer membrane protein (OMP) biogenesis in Escherichia coli is a robust process essential to the life of the organism. It is catalyzed by the ß-barrel assembly machine (Bam) complex, and a number of quality control factors, including periplasmic chaperones and proteases, maintain the integrity of this trafficking pathway. Little is known, however, about how periplasmic proteases recognize and degrade OMP substrates when assembly is compromised or whether different proteases recognize the same substrate at distinct points in the assembly pathway. In this work, we use well-defined assembly-defective mutants of LptD, the essential lipopolysaccharide assembly translocon, to show that the periplasmic protease DegP degrades substrates with assembly defects that prevent or impair initial contact with Bam, causing the mutant protein to accumulate in the periplasm. In contrast, another periplasmic protease, BepA, degrades a LptD mutant substrate that has engaged the Bam complex and formed a nearly complete barrel. Furthermore, we describe the role of the outer membrane lipoprotein YcaL, a protease of heretofore unknown function, in the degradation of a LptD substrate that has engaged the Bam complex but is stalled at an earlier step in the assembly process that is not accessible to BepA. Our results demonstrate that multiple periplasmic proteases monitor OMPs at distinct points in the assembly process.IMPORTANCE OMP assembly is catalyzed by the essential Bam complex and occurs in a cellular environment devoid of energy sources. Assembly intermediates that misfold can compromise this essential molecular machine. Here we demonstrate distinctive roles for three different periplasmic proteases that can clear OMP substrates with folding defects that compromise assembly at three different stages. These quality control factors help ensure the integrity of the permeability barrier that contributes to the intrinsic resistance of Gram-negative organisms to many antibiotics.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Metaloproteasas/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas Periplasmáticas/metabolismo , Serina Endopeptidasas/metabolismo , Modelos Biológicos , Proteolisis
5.
J Bacteriol ; 196(18): 3214-20, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24957626

RESUMEN

In Gram-negative bacteria, lipopolysaccharide (LPS) contributes to the robust permeability barrier of the outer membrane, preventing entry of toxic molecules such as antibiotics. Mutations in lptD, the beta-barrel component of the LPS transport and assembly machinery, compromise LPS assembly and result in increased antibiotic sensitivity. Here, we report rare vancomycin-resistant suppressors that improve barrier function of a subset of lptD mutations. We find that all seven suppressors analyzed mapped to the essential gene cdsA, which is responsible for the conversion of phosphatidic acid to CDP-diacylglycerol in phospholipid biosynthesis. These cdsA mutations cause a partial loss of function and, as expected, accumulate phosphatidic acid. We show that this suppression is not confined to mutations that cause defects in outer membrane biogenesis but rather that these cdsA mutations confer a general increase in vancomycin resistance, even in a wild-type cell. We use genetics and quadrupole time of flight (Q-TOF) liquid chromatography-mass spectrometry (LC-MS) to show that accumulation of phosphatidic acid by means other than cdsA mutations also increases resistance to vancomycin. We suggest that increased levels of phosphatidic acid change the physical properties of the outer membrane to impede entry of vancomycin into the periplasm, hindering access to its target, an intermediate required for the synthesis of the peptidoglycan cell wall.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Nucleotidiltransferasas/metabolismo , Ácidos Fosfatidicos/metabolismo , Resistencia a la Vancomicina , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo , Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/genética , Cromatografía Liquida/métodos , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Espectrometría de Masas/métodos , Mutación , Nucleotidiltransferasas/genética , Fosfolípidos/metabolismo , Vancomicina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA