Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(9)2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35563446

RESUMEN

We examined whether sulfated hyaluronan exerts inhibitory effects on enzymatic and biological actions of heparanase, a sole endo-beta-glucuronidase implicated in cancer malignancy and inflammation. Degradation of heparan sulfate by human and mouse heparanase was inhibited by sulfated hyaluronan. In particular, high-sulfated hyaluronan modified with approximately 2.5 sulfate groups per disaccharide unit effectively inhibited the enzymatic activity at a lower concentration than heparin. Human and mouse heparanase bound to immobilized sulfated hyaluronan. Invasion of heparanase-positive colon-26 cells and 4T1 cells under 3D culture conditions was significantly suppressed in the presence of high-sulfated hyaluronan. Heparanase-induced release of CCL2 from colon-26 cells was suppressed in the presence of sulfated hyaluronan via blocking of cell surface binding and subsequent intracellular NF-κB-dependent signaling. The inhibitory effect of sulfated hyaluronan is likely due to competitive binding to the heparanase molecule, which antagonizes the heparanase-substrate interaction. Fragment molecular orbital calculation revealed a strong binding of sulfated hyaluronan tetrasaccharide to the heparanase molecule based on electrostatic interactions, particularly characterized by interactions of (-1)- and (-2)-positioned sulfated sugar residues with basic amino acid residues composing the heparin-binding domain-1 of heparanase. These results propose a relevance for sulfated hyaluronan in the blocking of heparanase-mediated enzymatic and cellular actions.


Asunto(s)
Carcinoma , Glucuronidasa , Ácido Hialurónico , Animales , Carcinoma/tratamiento farmacológico , Carcinoma/metabolismo , Glucuronidasa/efectos de los fármacos , Glucuronidasa/metabolismo , Heparina/farmacología , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Ratones , Sulfatos
2.
Biochem Biophys Res Commun ; 503(4): 3235-3241, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30149916

RESUMEN

We investigated the fate of proheparanase added to the culture media of mast cells. A recombinant protein mimicking proheparanase was continuously internalized into mastocytoma cells as well as bone marrow- and peritoneal cell-derived mast cells. Internalized heparanase molecules were accumulated in granules and a significant portion was released by stimulation with ionomycin, indicating that the internalized heparanase was sorted into secretory granules. The pro-form heparanase was processed into a mature and an active form inside the cells, in which intracellular heparin was fragmented by the mature enzyme. The internalization was substantially inhibited by addition of heparin and heparan sulfate to the culture medium, suggesting that glycosaminoglycan is involved in the uptake pathway. Out of four syndecans, expression of syndecan-3 and syndecan-4, especially cell surface syndecan-4, was detected in the mastocytoma cells. Two knockdown clones transfected with a shRNA expression vector targeting the syndecan-4 gene took up significantly lower amounts of heparanase than mock cells. We propose that some exogenous substances like proheparanase can be incorporated into mast cell granules via a glycosaminoglycan-mediated, especially syndecan-4-dependent, uptake pathway.


Asunto(s)
Glucuronidasa/metabolismo , Mastocitos/fisiología , Sindecano-4/metabolismo , Animales , Degranulación de la Célula , Células Cultivadas , Endocitosis , Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Mastocitos/citología , Mastocitos/metabolismo , Ratones , Transporte de Proteínas , Proteínas Recombinantes/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA