Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Biol ; 22(1): 115, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764040

RESUMEN

BACKGROUND: Thromboinflammation is caused by mutual activation of platelets and neutrophils. The site of thromboinflammation is determined by chemoattracting agents release by endothelium, immune cells, and platelets. Impaired neutrophil chemotaxis contributes to the pathogenesis of Shwachman-Diamond syndrome (SDS). In this hereditary disorder, neutrophils are known to have aberrant chemoattractant-induced F-actin properties. Here, we aim to determine whether neutrophil chemotaxis could be analyzed using our previously developed ex vivo assay of the neutrophils crawling among the growing thrombi. METHODS: Adult and pediatric healthy donors, alongside with pediatric patients with SDS, were recruited for the study. Thrombus formation and granulocyte movement in hirudinated whole blood were visualized by fluorescent microscopy in fibrillar collagen-coated parallel-plate flow chambers. Alternatively, fibrinogen, fibronectin, vWF, or single tumor cells immobilized on coverslips were used. A computational model of chemokine distribution in flow chamber with a virtual neutrophil moving in it was used to analyze the observed data. RESULTS: The movement of healthy donor neutrophils predominantly occurred in the direction and vicinity of thrombi grown on collagen or around tumor cells. For SDS patients or on coatings other than collagen, the movement was characterized by randomness and significantly reduced velocities. Increase in wall shear rates to 300-500 1/s led to an increase in the proportion of rolling neutrophils. A stochastic algorithm simulating leucocyte chemotaxis movement in the calculated chemoattractant field could reproduce the experimental trajectories of moving neutrophils for 72% of cells. CONCLUSIONS: In samples from healthy donors, but not SDS patients, neutrophils move in the direction of large, chemoattractant-releasing platelet thrombi growing on collagen.


Asunto(s)
Neutrófilos , Trombosis , Humanos , Neutrófilos/fisiología , Trombosis/fisiopatología , Quimiotaxis , Adulto , Niño , Masculino , Quimiotaxis de Leucocito , Femenino , Movimiento Celular
2.
Pediatr Res ; 95(4): 966-973, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37872237

RESUMEN

BACKGROUND: Platelets are blood cells responsible for the prevention of blood loss upon vessel wall disruption. It has been demonstrated that platelet functioning differs significantly between adult and pediatric donors. This study aimed to identify potential differences between the protein composition of platelets of pediatric, adolescent, and adult donors. METHODS: Platelet functional testing was conducted with live cell flow cytometry. Using a straightforward approach to platelet washing based on the sequential platelets centrifugation-resuspension, we were able to obtain stable and robust proteomics results, which corresponded to previously published data. RESULTS: We have identified that pediatric donors' platelets have increased amounts of proteins, responsible for mitochondrial activity, proteasome activity, and vesicle transport. Flow cytometry analysis of platelet intracellular signaling and functional responses revealed that platelets of the pediatric donors have diminished granule secretion and increased quiescent platelet calcium concentration and decreased calcium mobilization in response to ADP. We could explain the observed changes in calcium responses by the increased mitochondria protein content, and the changes in granule secretion could be explained by the differences in vesicle transport protein content. CONCLUSIONS: Therefore, we can conclude that the age-dependence of platelet functional responses originates from the difference in platelet protein content. IMPACT: Platelets of infants are known to functionally differ from the platelet of adult donors, although the longevity and persistivity of these differences are debatable. Pediatric donor platelets have enhanced amounts of mitochondrial, proteasomal, and vesicle transport proteins. Platelets of the pediatric donors had increased cytosolic calcium in the resting state, what is explained by the increased numbers of mitochondrial proteins. Infants had decreased platelet granule release, which resolved upon adolescence. Thus, platelets of the infants should be assessed differently from adult platelets. Differences in platelet proteomic contents persisted in adolescent groups, yet, no significant differences in platelet function were observed.


Asunto(s)
Calcio , Proteómica , Adulto , Adolescente , Humanos , Niño , Calcio/metabolismo , Plaquetas/metabolismo , Hemorragia , Hemostasis
3.
J Theor Biol ; 582: 111757, 2024 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-38336240

RESUMEN

BACKGROUND: Factor X activation by the phospholipid-bound intrinsic tenase complex is a critical membrane-dependent reaction of blood coagulation. Its regulation mechanisms are unclear, and a number of questions regarding diffusional limitation, pathways of assembly and substrate delivery remain open. METHODS: We develop and analyze here a detailed mechanism-driven computer model of intrinsic tenase on phospholipid surfaces. Three-dimensional reaction-diffusion-advection and stochastic simulations were used where appropriate. RESULTS: Dynamics of the system was predominantly non-stationary under physiological conditions. In order to describe experimental data, we had to assume both membrane-dependent and solution-dependent delivery of the substrate. The former pathway dominated at low cofactor concentration, while the latter became important at low phospholipid concentration. Factor VIIIa-factor X complex formation was the major pathway of the complex assembly, and the model predicted high affinity for their lipid-dependent interaction. Although the model predicted formation of the diffusion-limited layer of substrate for some conditions, the effects of this limitation on the fXa production were small. Flow accelerated fXa production in a flow reactor model by bringing in fIXa and fVIIIa rather than fX. CONCLUSIONS: This analysis suggests a concept of intrinsic tenase that is non-stationary, employs several pathways of substrate delivery depending on the conditions, and is not particularly limited by diffusion of the substrate.


Asunto(s)
Factor X , Proteínas de Neoplasias , Fosfolípidos , Factor X/metabolismo , Fosfolípidos/metabolismo , Factor IXa/metabolismo , Cisteína Endopeptidasas/metabolismo , Cinética
4.
Eur J Haematol ; 112(4): 554-565, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38083800

RESUMEN

OBJECTIVES: Flow cytometry with adenosine diphosphate (ADP) allows to characterize molecular changes of platelet function caused by this physiologically important activation, but the methodology has not been thoroughly investigated, standardized and characterized yet. We analyzed the influence of several major variables and chose optimal conditions for platelet function assessment. METHODS: For activation, 2.5 µM CaCl2 , 5 µM ADP and antibodies were added to diluted blood and incubated for 15 min. We analyzed kinetics of antibody binding and effects of their addition sequence, agonist concentration, blood dilution, exogenous calcium addition and platelet fixation. RESULTS: We tested our protocol on 11 healthy children, 22 healthy adult volunteers, 9 patients after a month on dual antiplatelet therapy after percutaneous coronary intervention (PCI), 7 adult patients and 14 children with immune thrombocytopenia (ITP). We found that our protocol is highly sensitive to ADP stimulation with low percentage of aggregates formation. The assay is also sensitive to platelet function inhibition in post-PCI patients. Finally, platelet preactivation with ITP plasma was stronger and caused increase in activation response to ADP stimulation compared to preactivation with low dose of ADP. CONCLUSIONS: Our assay is sensitive to antiplatelet therapy and platelet preactivation in ITP patients under physiological conditions with minimal percentage of aggregates formation.


Asunto(s)
Intervención Coronaria Percutánea , Púrpura Trombocitopénica Idiopática , Adulto , Niño , Humanos , Citometría de Flujo/métodos , Plaquetas/metabolismo , Púrpura Trombocitopénica Idiopática/terapia , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Adenosina Difosfato/farmacología , Adenosina Difosfato/metabolismo , Adenosina Difosfato/uso terapéutico , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/uso terapéutico , Agregación Plaquetaria , Activación Plaquetaria
5.
BMC Biol ; 20(1): 32, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35125118

RESUMEN

BACKGROUND: The process of thrombus formation is thought to involve interactions between platelets and leukocytes. Leukocyte incorporation into growing thrombi has been well established in vivo, and a number of properties of platelet-leukocyte interactions critical for thrombus formation have been characterized in vitro in thromboinflammatory settings and have clinical relevance. Leukocyte activity can be impaired in distinct hereditary and acquired disorders of immunological nature, among which is Wiskott-Aldrich Syndrome (WAS). However, a more quantitative characterization of leukocyte behavior in thromboinflammatory conditions has been hampered by lack of approaches for its study ex vivo. Here, we aimed to develop an ex vivo model of thromboinflammation, and compared granulocyte behavior of WAS patients and healthy donors. RESULTS: Thrombus formation in anticoagulated whole blood from healthy volunteers and patients was visualized by fluorescent microscopy in parallel-plate flow chambers with fibrillar collagen type I coverslips. Moving granulocytes were observed in hirudinated or sodium citrate-recalcified blood under low wall shear rate conditions (100 s-1). These cells crawled around thrombi in a step-wise manner with an average velocity of 90-120 nm/s. Pre-incubation of blood with granulocyte priming agents lead to a significant decrease in mean-velocity of the cells and increase in the number of adherent cells. The leukocytes from patients with WAS demonstrated a 1.5-fold lower mean velocity, in line with their impaired actin polymerization. It is noteworthy that in an experimental setting where patients' platelets were replaced with healthy donor's platelets the granulocytes' crawling velocity did not change, thus proving that WASP (WAS protein) deficiency causes disruption of granulocytes' behavior. Thereby, the observed features of granulocytes crawling are consistent with the neutrophil chemotaxis phenomenon. As most of the crawling granulocytes carried procoagulant platelets teared from thrombi, we propose that the role of granulocytes in thrombus formation is that of platelet scavengers. CONCLUSIONS: We have developed an ex vivo experimental model applicable for observation of granulocyte activity in thrombus formation. Using the proposed setting, we observed a reduction of motility of granulocytes of patients with WAS. We suggest that our ex vivo approach should be useful both for basic and for clinical research.


Asunto(s)
Inflamación , Trombosis , Granulocitos/metabolismo , Humanos , Inflamación/complicaciones , Trombosis/etiología , Trombosis/metabolismo
6.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38139118

RESUMEN

The hematological effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are important in COVID-19 pathophysiology. However, the interactions of SARS-CoV-2 with platelets and red blood cells are still poorly understood. There are conflicting data regarding the mechanisms and significance of these interactions. The aim of this review is to put together available data and discuss hypotheses, the known and suspected effects of the virus on these blood cells, their pathophysiological and diagnostic significance, and the potential role of platelets and red blood cells in the virus's transport, propagation, and clearance by the immune system. We pay particular attention to the mutual activation of platelets, the immune system, the endothelium, and blood coagulation and how this changes with the evolution of SARS-CoV-2. There is now convincing evidence that platelets, along with platelet and erythroid precursors (but not mature erythrocytes), are frequently infected by SARS-CoV-2 and functionally changed. The mechanisms of infection of these cells and their role are not yet entirely clear. Still, the changes in platelets and red blood cells in COVID-19 are significantly associated with disease severity and are likely to have prognostic and pathophysiological significance in the development of thrombotic and pulmonary complications.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Plaquetas , Coagulación Sanguínea , Eritrocitos
7.
Semin Cancer Biol ; 68: 192-198, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32032699

RESUMEN

Drug repositioning, the assignment of new therapeutic purposes to known drugs, is an established strategy with many repurposed drugs on the market and many more at experimental stage. We review three use cases, a herpes drug with benefits in cancer, a cancer drug with potential in autoimmune disease, and a selective and an unspecific drug binding the same target (GPCR). We explore these use cases from a structural point of view focusing on a deep understanding of the underlying drug-target interactions. We review tools and data needed for such a drug-centric structural repositioning approach. Finally, we show that the availability of data on targets is an important limiting factor to realize the full potential of structural drug-repositioning.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/uso terapéutico , Antivirales/uso terapéutico , Enfermedades Autoinmunes/tratamiento farmacológico , Reposicionamiento de Medicamentos/métodos , Neoplasias/tratamiento farmacológico , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Animales , Descubrimiento de Drogas , Humanos
8.
Metab Eng ; 72: 259-274, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35381376

RESUMEN

Synthetic biology and metabolic engineering rely on computational search tools for predictions of novel biosynthetic pathways to industrially important compounds, many of which are derived from aromatic amino acids. Pathway search tools vary in their scope of covered reactions and compounds, as well as in metrics for ranking and evaluation. In this work, we present a new computational resource called ARBRE: Aromatic compounds RetroBiosynthesis Repository and Explorer. It consists of a comprehensive biochemical reaction network centered around aromatic amino acid biosynthesis and a computational toolbox for navigating this network. ARBRE encompasses over 33'000 known and 390'000 novel reactions predicted with generalized enzymatic reactions rules and over 74'000 compounds, of which 19'000 are known to biochemical databases and 55'000 only to PubChem. Over 1'000 molecules that were solely part of the PubChem database before and were previously impossible to integrate into a biochemical network are included into the ARBRE reaction network by assigning enzymatic reactions. ARBRE can be applied for pathway search, enzyme annotation, pathway ranking, visualization, and network expansion around known biochemical pathways and products of lignin degradation to predict valuable compound derivations. In line with the standards of open science, we have made the toolbox freely available to the scientific community on git (https://github.com/EPFL-LCSB/ARBRE) and we provide the web-version at http://lcsb-databases.epfl.ch/arbre/. We envision that ARBRE will provide the community with a new computational resource and comprehensive search tool to predict and rank pathways towards industrially important aromatic compounds.


Asunto(s)
Ingeniería Metabólica , Redes y Vías Metabólicas , Aminoácidos Aromáticos/genética , Vías Biosintéticas , Biología Sintética
9.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36232664

RESUMEN

Global vaccination against the SARS-CoV-2 virus has proved to be highly effective. However, the possibility of antibody-dependent enhancement of infection (ADE) upon vaccination remains underinvestigated. Here, we aimed to theoretically determine conditions for the occurrence of ADE in COVID-19. We developed a series of mathematical models of antibody response: model Ab-a model of antibody formation; model Cv-a model of infection spread in the body; and a complete model, which combines the two others. The models describe experimental data on SARS-CoV and SARS-CoV-2 infections in humans and cell cultures, including viral load dynamics, seroconversion times and antibody concentration kinetics. The modelling revealed that a significant proportion of macrophages can become infected only if they bind antibodies with high probability. Thus, a high probability of macrophage infection and a sufficient amount of pre-existing antibodies are necessary for the development of ADE in SARS-CoV-2 infection. However, from the point of view of the dynamics of pneumocyte infection, the two cases where the body has a high concentration of preexisting antibodies and a high probability of macrophage infection and where there is a low concentration of antibodies in the body and no macrophage infection are indistinguishable. This conclusion could explain the lack of confirmed ADE cases for COVID-19.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Anticuerpos Antivirales , Acrecentamiento Dependiente de Anticuerpo , Humanos , SARS-CoV-2
10.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34360784

RESUMEN

In human spermatozoa, calcium dynamics control most of fertilization events. Progesterone, present in the female reproductive system, can trigger several types of calcium responses, such as low-frequency oscillations. Here we aimed to identify the mechanisms of progesterone-induced calcium signaling in human spermatozoa. Progesterone-induced activation of fluorophore-loaded spermatozoa was studied by fluorescent microscopy. Two computational models were developed to describe the spermatozoa calcium responses: a homogeneous one based on a system of ordinary differential equations and a three-dimensional one with added space dimensions and diffusion for the cytosolic species. In response to progesterone, three types of calcium responses were observed in human spermatozoa: a single transient rise of calcium concentration in cytosol, a steady elevation, or low-frequency oscillations. The homogenous model provided qualitative description of the oscillatory and the single spike responses, while the three-dimensional model captured the calcium peak shape and the frequency of calcium oscillations. The model analysis demonstrated that an increase in the calcium diffusion coefficient resulted in the disappearance of the calcium oscillations. Additionally, in silico analysis suggested that the spatial distribution of calcium signaling enzymes governs the appearance of calcium oscillations in progesterone-activated human spermatozoa.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Simulación por Computador , Modelos Biológicos , Progesterona/farmacología , Espermatozoides/enzimología , Humanos , Masculino , Microscopía Fluorescente , Espermatozoides/citología
11.
Biophys J ; 118(11): 2641-2655, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32396849

RESUMEN

Platelets are blood cells responsible for vascular integrity preservation. The activation of platelet receptor C-type lectin-like receptor II-type (CLEC-2) could partially mediate the latter function. Although this receptor is considered to be of importance for hemostasis, the rate-limiting steps of CLEC-2-induced platelet activation are not clear. Here, we aimed to investigate CLEC-2-induced platelet signal transduction using computational modeling in combination with experimental approaches. We developed a stochastic multicompartmental computational model of CLEC-2 signaling. The model described platelet activation beginning with CLEC-2 receptor clustering, followed by Syk and Src family kinase phosphorylation, determined by the cluster size. Active Syk mediated linker adaptor for T cell protein phosphorylation and membrane signalosome formation, which resulted in the activation of Bruton's tyrosine kinase, phospholipase and phosphoinositide-3-kinase, calcium, and phosphoinositide signaling. The model parameters were assessed from published experimental data. Flow cytometry, total internal reflection fluorescence and confocal microscopy, and western blotting quantification of the protein phosphorylation were used for the assessment of the experimental dynamics of CLEC-2-induced platelet activation. Analysis of the model revealed that the CLEC-2 receptor clustering leading to the membrane-based signalosome formation is a critical element required for the accurate description of the experimental data. Both receptor clustering and signalosome formation are among the rate-limiting steps of CLEC-2-mediated platelet activation. In agreement with these predictions, the CLEC-2-induced platelet activation, but not activation mediated by G-protein-coupled receptors, was strongly dependent on temperature conditions and cholesterol depletion. Besides, the model predicted that CLEC-2-induced platelet activation results in cytosolic calcium spiking, which was confirmed by single-platelet total internal reflection fluorescence microscopy imaging. Our results suggest a refined picture of the platelet signal transduction network associated with CLEC-2. We show that tyrosine kinase activation is not the only rate-limiting step in CLEC-2-induced activation of platelets. Translocation of receptor-agonist complexes to the signaling region and linker adaptor for T cell signalosome formation in this region are limiting CLEC-2-induced activation as well.


Asunto(s)
Glicoproteínas de Membrana , Proteínas Tirosina Quinasas , Plaquetas/metabolismo , Análisis por Conglomerados , Lectinas Tipo C/metabolismo , Activación Plaquetaria , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal
12.
Haematologica ; 105(4): 1095-1106, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31278208

RESUMEN

Wiskott-Aldrich syndrome (WAS) is associated with thrombocytopenia of unclear origin. We investigated real-time cytosolic calcium dynamics, mitochondrial membrane potential and phoszphatidylserine (PS) exposure in single fibrinogen-bound platelets using confocal microscopy. The WAS platelets had higher resting calcium levels, more frequent spikes, and their mitochondria more frequently lost membrane potential followed by PS exposure (in 22.9% of platelets vs 3.9% in controls; P<0.001) after the collapse of the last mitochondria. This phenomenon was inhibited by the mitochondrial permeability transition pore inhibitor cyclosporine A, as well by xestospongin C and lack of extracellular calcium. Thapsigargin by itself caused accelerated cell death in the WAS platelets. The number of mitochondria was predictive of PS exposure: 33% of platelets from WAS patients with fewer than five mitochondria exposed PS, while only 12% did among those that had five or more mitochondria. Interestingly, healthy donor platelets with fewer mitochondria also more readily became procoagulant upon PAR1/PAR4 stimulation. Collapse of single mitochondria led to greater cytosolic calcium increase in WAS platelets if they had one to three mitochondria compared with platelets containing higher numbers. A computer systems biology model of platelet calcium homeostasis showed that smaller platelets with fewer mitochondria could have impaired calcium homeostasis because of higher surface-to-volume ratio and greater metabolic load, respectively. There was a correlation (C=0.81, P<0.02) between the mean platelet size and platelet count in the WAS patients. We conclude that WAS platelets readily expose PS via a mitochondria-dependent necrotic mechanism caused by their smaller size, which could contribute to the development of thrombocytopenia.


Asunto(s)
Plaquetas , Síndrome de Wiskott-Aldrich , Plaquetas/metabolismo , Humanos , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Necrosis , Síndrome de Wiskott-Aldrich/metabolismo
13.
Mol Cell Biochem ; 464(1-2): 119-130, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31754972

RESUMEN

Myeloperoxidase (MPO), an oxidant-producing enzyme, stored in azurophilic granules of neutrophils has been recently shown to influence red blood cell (RBC) deformability leading to abnormalities in blood microcirculation. Native MPO is a homodimer, consisting of two identical protomers (monomeric MPO) connected by a single disulfide bond but in inflammatory foci as a result of disulfide cleavage monomeric MPO (hemi-MPO) can also be produced. This study investigated if two MPO isoforms have distinct effects on biophysical properties of RBCs. We have found that hemi-MPO, as well as the dimeric form, bind to the glycophorins A/B and band 3 protein on RBC's plasma membrane, that lead to reduced cell resistance to osmotic and acidic hemolysis, reduction in cell elasticity, significant changes in cell volume, morphology, and the conductance of RBC plasma membrane ion channels. Furthermore, we have shown for the first time that both dimeric and hemi-MPO lead to phosphatidylserine (PS) exposure on the outer leaflet of RBC membrane. However, the effects of hemi-MPO on the structural and functional properties of RBCs were lower compared to those of dimeric MPO. These findings suggest that the ability of MPO protein to influence RBC's biophysical properties depends on its conformation (dimeric or monomeric isoform). It is intriguing to speculate that hemi-MPO appearance in blood during inflammation can serve as a regulatory mechanism addressed to reduce abnormalities on RBC response, induced by dimeric MPO.


Asunto(s)
Membrana Eritrocítica/enzimología , Peroxidasa/metabolismo , Multimerización de Proteína , Membrana Eritrocítica/patología , Células HL-60 , Humanos , Inflamación/enzimología , Inflamación/patología , Isoenzimas/metabolismo , Fosfatidilserinas/metabolismo
14.
Blood ; 128(13): 1745-55, 2016 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-27432876

RESUMEN

Binding of coagulation factors to phosphatidylserine (PS)-exposing procoagulant-activated platelets followed by formation of the membrane-dependent enzyme complexes is critical for blood coagulation. Procoagulant platelets formed upon strong platelet stimulation, usually with thrombin plus collagen, are large "balloons" with a small (∼1 µm radius) "cap"-like convex region that is enriched with adhesive proteins. Spatial distribution of blood coagulation factors on the surface of procoagulant platelets was investigated using confocal microscopy. All of them, including factors IXa (FIXa), FXa/FX, FVa, FVIII, prothrombin, and PS-sensitive marker Annexin V were distributed nonhomogeneously: they were primarily localized in the "cap," where their mean concentration was by at least an order of magnitude, higher than on the "balloon." Assembly of intrinsic tenase on liposomes with various PS densities while keeping the PS content constant demonstrated that such enrichment can accelerate this reaction by 2 orders of magnitude. The mechanisms of such acceleration were investigated using a 3-dimensional computer simulation model of intrinsic tenase based on these data. Transmission electron microscopy and focal ion beam-scanning electron microscopy with Annexin V immunogold-labeling revealed a complex organization of the "caps." In platelet thrombi formed in whole blood on collagen under arterial shear conditions, ubiquitous "caps" with increased Annexin V, FX, and FXa binding were observed, indicating relevance of this mechanism for surface-attached platelets under physiological flow. These results reveal an essential heterogeneity in the surface distribution of major coagulation factors on the surface of procoagulant platelets and suggest its importance in promoting membrane-dependent coagulation reactions.


Asunto(s)
Factores de Coagulación Sanguínea/metabolismo , Coagulación Sanguínea/fisiología , Plaquetas/metabolismo , Adulto , Anexina A5/metabolismo , Plaquetas/ultraestructura , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Simulación por Computador , Humanos , Imagenología Tridimensional , Técnicas In Vitro , Microscopía Confocal , Microscopía Inmunoelectrónica , Fosfatidilserinas/sangre , Activación Plaquetaria/fisiología , Unión Proteica , Trombina/metabolismo , Trombosis/metabolismo , Trombosis/patología
15.
Biochim Biophys Acta ; 1858(6): 1216-27, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26874201

RESUMEN

Binding of coagulation factors X (fX) and Xa (fXa) to activated platelets is required for the formation of membrane-dependent enzymatic complexes of intrinsic tenase and prothrombinase. We carried out an in-depth characterization of fX/fXa binding to phospholipids and gel-filtered, thrombin-activated platelets. Flow cytometry, surface plasmon resonance, and computational modeling were used to investigate interactions of fX/fXa with the membranes. Confocal microscopy was employed to study fXa binding to platelet thrombi formed in flowing whole blood under arterial conditions. Binding of fX/fXa to either vesicles or procoagulant platelets did not follow a traditional one-step reversible binding model. Their dissociation was a two-step process resulting in a plateau that was up to 10-fold greater than the saturation value observed in the association experiments. Computational modeling and experimental evidence suggested that this was caused by a combination of two-step association (mainly for fX) and multimerization on the membrane (mainly for fXa). Importantly, fX formed multimers with fXa, thereby improving its retention. The same binding/dissociation hysteresis was observed for annexin V known to form trimers on the membranes. Experiments with platelets from gray syndrome patients showed that alpha-granular factor Va provided an additional high-affinity binding site for fXa that did not affect the hysteresis. Confocal microscopy observation of fXa binding to platelet thrombi in a flow chamber and its wash-out confirmed that this phenomenon persisted under physiologically relevant conditions. This suggests its possible role of "locking" coagulation factors on the membrane and preventing their inhibition in plasma and removal from thrombi by flow.


Asunto(s)
Biopolímeros/metabolismo , Plaquetas/metabolismo , Factor X/metabolismo , Factor Xa/metabolismo , Fosfolípidos/metabolismo , Activación Plaquetaria , Simulación por Computador , Humanos , Resonancia por Plasmón de Superficie
17.
J Theor Biol ; 435: 125-133, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-28935233

RESUMEN

Membrane-bound enzyme complex of extrinsic tenase (VIIa/TF) is believed to be the primary activator of blood clotting in vivo. This complex (where factor VIIa (FVIIa) is a catalytically active part and tissue factor (TF) is its essential cofactor) activates its primary substrate factor X (FX) leading to factor Xa (FXa) ('a' stands for 'activated'). Both FX and FXa are able to bind to phospholipid membrane and, therefore, are distributed between solution and membrane surface. As a result, two possible mechanisms of substrate delivery to the extrinsic tenase exist: via lateral diffusion on the membrane surface or directly from the solution. Determination of the predominant pathway of substrate delivery is an important key to understanding the precise reaction mechanism. Here we construct a mechanism-driven computational model of FX activation by extrinsic tenase on the surface of phospholipid vesicles of different size. We show that experimentally observed dependence of the tenase activity on the phospholipid concentration could be obtained only if the substrate (FX) is membrane-bound. For correct experimental data description it is also necessary to take into account the dependence of FX/FXa membrane binding parameters (equilibrium dissociation constant and the number of phospholipid molecules per bound FX/FXa) on the membrane curvature. The model predicts that small vesicles promote activation of FX by the extrinsic tenase significantly better than large vesicles (with the same overall phospholipid, factors VIIa, X and TF concentrations in the solution).


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Factor X/metabolismo , Proteínas de Neoplasias/metabolismo , Factor Xa , Humanos , Liposomas , Proteínas de la Membrana/metabolismo , Fosfolípidos/metabolismo
18.
J Theor Biol ; 382: 235-43, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26187095

RESUMEN

Surface-induced activation of factor XII is critical part of the intrinsic pathway of blood coagulation. The mechanism of this process remains unclear: in particular, it is not known whether the initial amounts of factor XIIa, an active form of factor XII, are produced purely by factor XII contacting a surface or if traces of factor XIIa pre-exist. Furthermore, it is not known whether factor XII first has to bind to a surface before it can interact with the surface-bound factor XIIa in a two-dimensional process to become activated ("bound-substrate model") or if surface-bound factor XIIa activates a fluid-delivered form of factor XII ("free-substrate model"). To investigate these possibilities, we used mathematical modeling to implement various hypotheses. Time courses of factor XII production were generated under different initial conditions and matched with experimental data. We established that only the "bound-substrate model" fits with the majority of experimental data, whereas the "free-substrate model" does not. We also addressed the question of spontaneous activation and found that measurable differences between the models with and without spontaneous activation appear only under limiting conditions (deficit or excess of surface). As there are insufficient data regarding the system's behavior upon such variations of surface concentration in the literature, we designed new experiments to answer this question.


Asunto(s)
Coagulación Sanguínea , Factor XII/metabolismo , Simulación por Computador , Cinética , Modelos Biológicos , Especificidad por Sustrato , Propiedades de Superficie
19.
ArXiv ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38903736

RESUMEN

Expert curation is essential to capture knowledge of enzyme functions from the scientific literature in FAIR open knowledgebases but cannot keep pace with the rate of new discoveries and new publications. In this work we present EnzChemRED, for Enzyme Chemistry Relation Extraction Dataset, a new training and benchmarking dataset to support the development of Natural Language Processing (NLP) methods such as (large) language models that can assist enzyme curation. EnzChemRED consists of 1,210 expert curated PubMed abstracts in which enzymes and the chemical reactions they catalyze are annotated using identifiers from the UniProt Knowledgebase (UniProtKB) and the ontology of Chemical Entities of Biological Interest (ChEBI). We show that fine-tuning pre-trained language models with EnzChemRED can significantly boost their ability to identify mentions of proteins and chemicals in text (Named Entity Recognition, or NER) and to extract the chemical conversions in which they participate (Relation Extraction, or RE), with average F1 score of 86.30% for NER, 86.66% for RE for chemical conversion pairs, and 83.79% for RE for chemical conversion pairs and linked enzymes. We combine the best performing methods after fine-tuning using EnzChemRED to create an end-to-end pipeline for knowledge extraction from text and apply this to abstracts at PubMed scale to create a draft map of enzyme functions in literature to guide curation efforts in UniProtKB and the reaction knowledgebase Rhea. The EnzChemRED corpus is freely available at https://ftp.expasy.org/databases/rhea/nlp/.

20.
Int J Numer Method Biomed Eng ; 39(11): e3689, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36802118

RESUMEN

Proteolytic reactions on the phospholipid membrane surface, so-called "membrane-dependent" reactions, play central role in the process of blood clotting. One particularly important example is FX activation by the extrinsic tenase (VIIa/TF). Here we constructed three mathematical models of FX activation by VIIa/TF: (A) a homogeneous "well-mixed" model, (B) a two-compartment "well-mixed" model, (C) a heterogeneous model with diffusion, to investigate the impact and importance of inclusion of each complexity level. All models provided good description of the reported experimental data and were equivalently applicable for <40 µM of phospholipids. Model C provided better predictions than A, B in the presence of TF-negative phospholipid microparticles. Models predicted that for high TF surface density (STF ) and FX deficiency the FX activation rate was limited by the rate of FX binding to the membrane. For low STF and excess of FX the reaction rate was limited by the tenase formation rate. The analysis of the substrate delivery pathways revealed that FX bound to VIIa/TF predominantly from solution for STF >2.8 × 10-3  nmol/cm2 and from the membrane for lower STF . We proposed the experimental setting to distinguish between the collision-limited and non-collision-limited binding. The analysis of models in flow and non-flow conditions revealed that the model of a vesicle in flow might be substituted by model C in the absence of the substrate depletion. Together, this study was the first which provided the direct comparison of more simple and more complex models. The reaction mechanisms were studied in a wide range of conditions.


Asunto(s)
Factor X , Tromboplastina , Factor X/metabolismo , Tromboplastina/metabolismo , Factor VIIa/metabolismo , Fosfolípidos/metabolismo , Coagulación Sanguínea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA