Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Emerg Infect Dis ; 28(3): 608-616, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35201739

RESUMEN

Histidine-rich protein 2 (HRP2)-based rapid diagnostic tests detect Plasmodium falciparum malaria and are used throughout sub-Saharan Africa. However, deletions in the pfhrp2 and related pfhrp3 (pfhrp2/3) genes threaten use of these tests. Therapeutic efficacy studies (TESs) enroll persons with symptomatic P. falciparum infection. We screened TES samples collected during 2016-2018 in Ethiopia, Kenya, Rwanda, and Madagascar for HRP2/3, pan-Plasmodium lactate dehydrogenase, and pan-Plasmodium aldolase antigen levels and selected samples with low levels of HRP2/3 for pfhrp2/3 genotyping. We observed deletion of pfhrp3 in samples from all countries except Kenya. Single-gene deletions in pfhrp2 were observed in 1.4% (95% CI 0.2%-4.8%) of Ethiopia samples and in 0.6% (95% CI 0.2%-1.6%) of Madagascar samples, and dual pfhrp2/3 deletions were noted in 2.0% (95% CI 0.4%-5.9%) of Ethiopia samples. Although this study was not powered for precise prevalence estimates, evaluating TES samples revealed a low prevalence of pfhrp2/3 deletions in most sites.


Asunto(s)
Malaria Falciparum , Malaria , Antígenos de Protozoos/genética , Pruebas Diagnósticas de Rutina , Etiopía/epidemiología , Eliminación de Gen , Humanos , Kenia/epidemiología , Madagascar/epidemiología , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Rwanda/epidemiología
2.
Malar J ; 21(1): 359, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36451216

RESUMEN

BACKGROUND: Routine monitoring of anti-malarial drugs is recommended for early detection of drug resistance and to inform national malaria treatment guidelines. In Ethiopia, the national treatment guidelines employ a species-specific approach. Artemether-lumefantrine (AL) and chloroquine (CQ) are the first-line schizonticidal treatments for Plasmodium falciparum and Plasmodium vivax, respectively. The National Malaria Control and Elimination Programme in Ethiopia is considering dihydroartemisinin-piperaquine (DHA/PPQ) as an alternative regimen for P. falciparum and P. vivax. METHODS: The study assessed the clinical and parasitological efficacy of AL, CQ, and DHA/PPQ in four arms. Patients over 6 months and less than 18 years of age with uncomplicated malaria mono-infection were recruited and allocated to AL against P. falciparum and CQ against P. vivax. Patients 18 years or older with uncomplicated malaria mono-infection were recruited and randomized to AL or dihydroartemisinin-piperaquine (DHA/PPQ) against P. falciparum and CQ or DHA/PPQ for P. vivax. Patients were followed up for 28 (for CQ and AL) or 42 days (for DHA/PPQ) according to the WHO recommendations. Polymerase chain reaction (PCR)-corrected and uncorrected estimates were analysed by Kaplan Meier survival analysis and per protocol methods. RESULTS: A total of 379 patients were enroled in four arms (n = 106, AL-P. falciparum; n = 75, DHA/PPQ- P. falciparum; n = 142, CQ-P. vivax; n = 56, DHA/PPQ-P. vivax). High PCR-corrected adequate clinical and parasitological response (ACPR) rates were observed at the primary end points of 28 days for AL and CQ and 42 days for DHA/PPQ. ACPR rates were 100% in AL-Pf (95% CI: 96-100), 98% in CQ-P. vivax (95% CI: 95-100) at 28 days, and 100% in the DHA/PPQ arms for both P. falciparum and P. vivax at 42 days. For secondary endpoints, by day three 99% of AL-P. falciparum patients (n = 101) cleared parasites and 100% were afebrile. For all other arms, 100% of patients cleared parasites and were afebrile by day three. No serious adverse events were reported. CONCLUSION: This study demonstrated high therapeutic efficacy for the anti-malarial drugs currently used by the malaria control programme in Ethiopia and provides information on the efficacy of DHA/PPQ for the treatment of P. falciparum and P. vivax as an alternative option.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Malaria Vivax , Humanos , Combinación Arteméter y Lumefantrina/uso terapéutico , Cloroquina/uso terapéutico , Plasmodium falciparum , Antimaláricos/uso terapéutico , Plasmodium vivax , Etiopía , Arteméter , Artemisininas/uso terapéutico , Malaria Vivax/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico
3.
Malar J ; 20(1): 72, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33546703

RESUMEN

BACKGROUND: In 2004, in response to high levels of treatment failure associated with sulfadoxine-pyrimethamine (SP) resistance, Benin changed its first-line malaria treatment from SP to artemisinin-based combination therapy for treatment of uncomplicated Plasmodium falciparum malaria. Resistance to SP is conferred by accumulation of single nucleotide polymorphisms (SNPs) in P. falciparum genes involved in folate metabolism, dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps), targeted by pyrimethamine and sulfadoxine, respectively. Because SP is still used for intermittent preventive treatment in pregnant women (IPTp) and seasonal malaria chemoprevention (SMCP) in Benin, the prevalence of Pfdhfr and Pfdhps SNPs in P. falciparum isolates collected in 2017 were investigated. METHODS: This study was carried out in two sites where the transmission of P. falciparum malaria is hyper-endemic: Klouékanmey and Djougou. Blood samples were collected from 178 febrile children 6-59 months old with confirmed uncomplicated P. falciparum malaria and were genotyped for SNPs associated with SP resistance. RESULTS: The Pfdhfr triple mutant IRN (N51I, C59R, and S108N) was the most prevalent (84.6%) haplotype and was commonly found with the Pfdhps single mutant A437G (50.5%) or with the Pfdhps double mutant S436A and A437G (33.7%). The quintuple mutant, Pfdhfr IRN/Pfdhps GE (A437G and K540E), was rarely observed (0.8%). The A581G and A613S mutant alleles were found in 2.6 and 3.9% of isolates, respectively. Six isolates (3.9%) were shown to harbour a mutation at codon I431V, recently identified in West African parasites. CONCLUSIONS: This study showed that Pfdhfr triple IRN mutants are near fixation in this population and that the highly sulfadoxine-resistant Pfdhps alleles are not widespread in Benin. These data support the continued use of SP for chemoprevention in these study sites, which should be complemented by periodic nationwide molecular surveillance to detect emergence of resistant genotypes.


Asunto(s)
Antimaláricos/farmacología , Dihidropteroato Sintasa/genética , Resistencia a Medicamentos/genética , Plasmodium falciparum/genética , Sulfadoxina/farmacología , Alelos , Benin/epidemiología , Preescolar , Dihidropteroato Sintasa/metabolismo , Combinación de Medicamentos , Femenino , Humanos , Lactante , Malaria Falciparum/epidemiología , Masculino , Plasmodium falciparum/enzimología , Prevalencia , Pirimetamina/farmacología
4.
Malar J ; 19(1): 291, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32795367

RESUMEN

BACKGROUND: Anti-malarial drug resistance remains a major threat to global malaria control efforts. In Africa, Plasmodium falciparum remains susceptible to artemisinin-based combination therapy (ACT), but the emergence of resistant parasites in multiple countries in Southeast Asia and concerns over emergence and/or spread of resistant parasites in Africa warrants continuous monitoring. The World Health Organization recommends that surveillance for molecular markers of resistance be included within therapeutic efficacy studies (TES). The current study assessed molecular markers associated with resistance to Artemether-lumefantrine (AL) and Dihydroartemisinin-piperaquine (DP) from samples collected from children aged 6-59 months enrolled in a TES conducted in Siaya County, western Kenya from 2016 to 2017. METHODS: Three hundred and twenty-three samples collected pre-treatment (day-0) and 110 samples collected at the day of recurrent parasitaemia (up to day 42) were tested for the presence of drug resistance markers in the Pfk13 propeller domain, and the Pfmdr1 and Pfcrt genes by Sanger sequencing. Additionally, the Pfpm2 gene copy number was assessed by real-time polymerase chain reaction. RESULTS: No mutations previously associated with artemisinin resistance were detected in the Pfk13 propeller region. However, other non-synonymous mutations in the Pfk13 propeller region were detected. The most common mutation found on day-0 and at day of recurrence in the Pfmdr1 multidrug resistance marker was at codon 184F. Very few mutations were found in the Pfcrt marker (< 5%). Within the DP arm, all recrudescent cases (8 sample pairs) that were tested for Pfpm2 gene copy number had a single gene copy. None of the associations between observed mutations and treatment outcomes were statistically significant. CONCLUSION: The results indicate absence of Pfk13 mutations associated with parasite resistance to artemisinin in this area and a very high proportion of wild-type parasites for Pfcrt. Although the frequency of Pfmdr1 184F mutations was high in these samples, the association with treatment failure did not reach statistical significance. As the spread of artemisinin-resistant parasites remains a possibility, continued monitoring for molecular markers of ACT resistance is needed to complement clinical data to inform treatment policy in Kenya and other malaria-endemic regions.


Asunto(s)
Antimaláricos/uso terapéutico , Resistencia a Medicamentos/genética , Malaria Falciparum/epidemiología , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/sangre , Biomarcadores/sangre , Preescolar , Genes Protozoarios , Humanos , Lactante , Kenia/epidemiología , Malaria Falciparum/sangre , Malaria Falciparum/parasitología , Parasitemia/tratamiento farmacológico , Plasmodium falciparum/genética , Prevalencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA