RESUMEN
Thyroperoxidase (TPO) is central in thyroid hormone (TH) synthesis and inhibition can lead to TH deficiency. Many chemicals can inhibit TPO activity in vitro, but how this may manifest in the developing thyroid gland at the molecular level is unclear. Here, we characterized the thyroid gland transcriptome of male rats developmentally exposed to the in vitro TPO-inhibitors amitrole, 2-mercaptobenzimidazole (MBI), or cyanamide by use of Bulk-RNA-Barcoding (BRB) and sequencing. Amitrole exposure caused TH deficiency and 149 differentially expressed genes in the thyroid gland. The effects indicated an activated and growing thyroid gland. MBI caused intermittent changes to serum TH concentrations in a previous study and this was accompanied by 60 differentially expressed genes in the present study. More than half of these were also affected by amitrole, indicating that they could be early effect biomarkers of developmental TH system disruption due to TPO inhibition. Further work to validate the signature is needed, including assessment of substance independency and applicability domain.
Asunto(s)
Yoduro Peroxidasa , Glándula Tiroides , Transcriptoma , Animales , Glándula Tiroides/metabolismo , Glándula Tiroides/efectos de los fármacos , Ratas , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Masculino , Transcriptoma/efectos de los fármacos , Amitrol (Herbicida)/farmacología , Inhibidores Enzimáticos/farmacología , Bencimidazoles/farmacologíaRESUMEN
The production of chlorinated paraffins (CPs) has risen in the past two decades due to their versatile industrial applications. Consequently, CPs are now widely detected in human food sources, the environment, and in human matrices such as serum, the placenta and breast milk. This raises concern about prenatal and postnatal exposure. While some studies suggest that certain short-chained CPs (SCCPs) may have endocrine disrupting properties, knowledge about potential endocrine disrupting potential of medium- (MCCP) and long-chained CPs (LCCPs) remains relativity sparse. Here, we used a panel of in vitro assays to investigate seven pure CPs and two technical mixtures of CPs. These varied in chain length and, chlorination degree. The in vitro panel covered androgen, estrogen, and retinoic acid receptor activities, transthyretin displacement, and steroidogenesis. One of the SCCPs inhibited androgen receptor (AR) activity. All SCCPs induced estrogen receptor (ER) activity. Some SCCPs and MCCPs increased 17ß-estradiol levels in the steroidogenesis assay, though not consistently across all substances in these groups. SCCPs exhibited the most pronounced effects in multiple in vitro assays, while the tested LCCPs showed no effects. Based on our results, some CPs can have endocrine disrupting potential in vitro. These findings warrant further examinations to ensure that CPs do not cause issues in intact organisms, including humans.
Asunto(s)
Hidrocarburos Clorados , Parafina , Humanos , Parafina/toxicidad , Parafina/análisis , Hidrocarburos Clorados/toxicidad , Hidrocarburos Clorados/análisis , Monitoreo del Ambiente/métodos , Estrógenos , ChinaRESUMEN
Exposure to endocrine-disrupting chemicals (EDCs) during development may cause reproductive disorders in women. Although female reproductive endpoints are assessed in rodent toxicity studies, a concern is that typical endpoints are not sensitive enough to detect chemicals of concern to human health. If so, measured endpoints must be improved or new biomarkers of effects included. Herein, we have characterized the dynamic transcriptional landscape of developing rat ovaries exposed to two well-known EDCs, diethylstilbestrol (DES) and ketoconazole (KTZ), by 3' RNA sequencing. Rats were orally exposed from day 7 of gestation until birth, and from postnatal day 1 until days 6, 14 or 22. Three exposure doses for each chemical were used: 3, 6 and 12 µg/kg bw/day of DES; 3, 6, 12 mg/kg bw/day of KTZ. The transcriptome changed dynamically during perinatal development in control ovaries, with 1137 differentially expressed genes (DEGs) partitioned into 3 broad expression patterns. A cross-species deconvolution strategy based on a mouse ovary developmental cell atlas was used to map any changes to ovarian cellularity across the perinatal period to allow for characterization of actual changes to gene transcript levels. A total of 184 DEGs were observed across dose groups and developmental stages in DES-exposed ovaries, and 111 DEGs in KTZ-exposed ovaries across dose groups and developmental stages. Based on our analyses, we have identified new candidate biomarkers for female reproductive toxicity induced by EDC, including Kcne2, Calb2 and Insl3.
Asunto(s)
Disruptores Endocrinos , Canales de Potasio con Entrada de Voltaje , Humanos , Embarazo , Ratones , Femenino , Ratas , Animales , Dietilestilbestrol/toxicidad , Ovario , Disruptores Endocrinos/toxicidad , Cetoconazol , Reproducción , Canales de Potasio con Entrada de Voltaje/farmacologíaRESUMEN
In rats, hypothyroidism during fetal and neonatal development can disrupt neuronal migration and induce the formation of periventricular heterotopia in the brain. However, it remains uncertain if heterotopia also manifest in mice after developmental hypothyroidism and whether they could be used as a toxicological endpoint to detect TH-mediated effects caused by TH system disrupting chemicals. Here, we performed a mouse study where we induced severe hypothyroidism by exposing pregnant mice (n = 3) to a very high dose of propylthiouracil (PTU) (1500 ppm) in the diet. This, to obtain best chances of detecting heterotopia. We found what appears to be very small heterotopia in 4 out of the 8 PTU-exposed pups. Although the incidence rate could suggest some utility for this endpoint, the small size of the ectopic neuronal clusters at maximum hypothyroidism excludes the utility of heterotopia in mouse toxicity studies aimed to detect TH system disrupting chemicals. On the other hand, parvalbumin expression was manifestly lower in the cortex of hypothyroid mouse offspring demonstrating that offspring TH-deficiency caused an effect on the developing brain. Based on overall results, we conclude that heterotopia formation in mice is not a useful toxicological endpoint for examining TH-mediated developmental neurotoxicity.
Asunto(s)
Hipotiroidismo , Heterotopia Nodular Periventricular , Efectos Tardíos de la Exposición Prenatal , Embarazo , Femenino , Humanos , Animales , Ratas , Ratones , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Exposición Materna , Hormonas Tiroideas/metabolismo , Hipotiroidismo/inducido químicamente , Hipotiroidismo/metabolismo , Propiltiouracilo/toxicidadRESUMEN
The average age for pubertal onset in girls has declined over recent decades. Epidemiological studies in humans and experimental studies in animals suggest a causal role for endocrine disrupting chemicals (EDCs) that are present in our environment. Of concern, current testing and screening regimens are inadequate in identifying EDCs that may affect pubertal maturation, not least because they do not consider early-life exposure. Also, the causal relationship between EDC exposure and pubertal timing is still a matter of debate. To address this issue, we have used current knowledge to elaborate a network of putative adverse outcome pathways (pAOPs) to identify how chemicals can affect pubertal onset. By using the AOP framework, we highlight current gaps in mechanistic understanding that need to be addressed and simultaneously point towards events causative of pubertal disturbance that could be exploited for alternative test methods. We propose 6 pAOPs that could explain the disruption of pubertal timing by interfering with the central hypothalamic trigger of puberty, GnRH neurons, and by so doing highlight specific modes of action that could be targeted for alternative test method development.
Asunto(s)
Rutas de Resultados Adversos , Disruptores Endocrinos/efectos adversos , Pubertad Precoz/inducido químicamente , Pubertad Precoz/metabolismo , Femenino , HumanosRESUMEN
Clotrimazole is a non-prescription and broad-spectrum antifungal drug sold under brand names such as Canesten® and Lotrimin®. It is used to treat different types of fungal infections, from oral thrush to athlete's foot and vaginal mycosis. The level of exposure to clotrimazole is uncertain, as the exact usage amongst self-medicating patients is unclear. Recent studies have raised potential concern about the unsupervised use of clotrimazole during pregnancy, especially since it is a potent inhibitor of CYP enzymes of the steroidogenesis pathway. To address some of these concerns, we have assessed the effects of intrauterine exposure to clotrimazole on developing rat fetuses. By exposing pregnant rats to clotrimazole 25 or 75 mg/kg bw/day during gestation days 7-21, we obtained internal fetal concentrations close to those observed in humans. These in vivo data are in strong agreement with our physiologically-based pharmacokinetic (PBK)-modelled levels. At these doses, we observed no obvious morphological changes to the reproductive system, nor shorter male anogenital distance; a well-established morphometric marker for anti-androgenic effects in male offspring. However, steroid hormone profiles were significantly affected in both maternal and fetal plasma, in particular pronounced suppression of estrogens was seen. In fetal testes, marked up-concentration of hydroxyprogesterone was observed, which indicates a specific action on steroidogenesis. Since systemic clotrimazole is rapidly metabolized in humans, relevant exposure levels may not in itself cause adverse changes to the reproductive systems. Its capacity to significantly alter steroid hormone concentrations, however, suggests that clotrimazole should be used with caution during pregnancy.
Asunto(s)
Antifúngicos/toxicidad , Clotrimazol/toxicidad , Disruptores Endocrinos/toxicidad , Feto/efectos de los fármacos , Hormonas Esteroides Gonadales/sangre , Animales , Antifúngicos/sangre , Antifúngicos/farmacocinética , Biomarcadores/sangre , Clotrimazol/sangre , Clotrimazol/farmacocinética , Disruptores Endocrinos/sangre , Disruptores Endocrinos/farmacocinética , Estrógenos/sangre , Femenino , Sangre Fetal/metabolismo , Feto/metabolismo , Edad Gestacional , Humanos , Hidroxiprogesteronas/sangre , Masculino , Exposición Materna , Embarazo , Ratas Sprague-Dawley , Medición de Riesgo , Especificidad de la Especie , ToxicocinéticaRESUMEN
Development of testes in the mammalian embryo requires the formation and assembly of several cell types that allow these organs to achieve their roles in male reproduction and endocrine regulation. Testis development is unusual in that several cell types such as Sertoli, Leydig, and spermatogonial cells arise from bipotential precursors present in the precursor tissue, the genital ridge. These cell types do not differentiate independently but depend on signals from Sertoli cells that differentiate under the influence of transcription factors SRY and SOX9. While these steps are becoming better understood, the origins and roles of many testicular cell types and structures-including peritubular myoid cells, the tunica albuginea, the arterial and venous blood vasculature, lymphatic vessels, macrophages, and nerve cells-have remained unclear. This review synthesizes current knowledge of how the architecture of the testis unfolds and highlights the questions that remain to be explored, thus providing a roadmap for future studies that may help illuminate the causes of XY disorders of sex development, infertility, and testicular cancers.
Asunto(s)
Diferenciación Celular , Testículo/citología , Testículo/embriología , Animales , Humanos , Macrófagos/metabolismo , Masculino , Células de Sertoli/citología , Testículo/irrigación sanguínea , Testículo/inervaciónRESUMEN
An adverse outcome pathway (AOP) is a simplified description of the sequence of mechanistic events that lead to a particular toxicological effect, from initial trigger to adverse outcome. Although designed to inform regulatory risk assessors, the AOP framework also provides a platform for innovative collaborations between experts from relevant research fields and the regulatory community. The underpinning for any AOP is basic knowledge about molecular and developmental processes; such knowledge can only be attained by solid bioscientific research. Starting with this fundamental knowledge, the objective is to devise novel testing strategies that focus on key events in a causative pathway. It is anticipated that such a knowledge-based approach will ultimately alleviate many of the burdens associated with classical chemical testing strategies that typically involve large-scale animal toxicity regimens. This hails from the notion that a solid understanding of the underlying mechanisms will allow the development and use of alternative test methods, including both in vitro and in silico approaches. This review is specifically targeted at professionals working in bioscientific fields, such as developmental and reproductive biology, and aims to (i) inform on the existence of the AOP framework and (ii) encourage new cross-disciplinary collaborations. It is hoped that fundamental biological knowledge can thus be better exploited for applied purposes: firstly, an improved understanding of how our perpetual exposure to environmental chemicals is causing human reproductive disease and, secondly, new approaches to screen for harmful chemicals more efficiently. This is not an instructional manual on how to create AOPs; rather, we discuss how to harness fundamental knowledge from the biosciences to assist regulatory toxicologists in their efforts to protect humans against chemicals that harm human reproductive development and function.
Asunto(s)
Rutas de Resultados Adversos , Biología Evolutiva/métodos , Noxas/efectos adversos , Reproducción/efectos de los fármacos , Medicina Reproductiva/métodos , Toxicología/métodos , Canal Anal/embriología , Andrógenos/fisiología , Animales , Disruptores Endocrinos/toxicidad , Genitales/embriología , Humanos , Comunicación Interdisciplinaria , Internet , Modelos Animales , Pezones/embriología , Noxas/toxicidad , Reproducción/fisiología , Tretinoina/toxicidadRESUMEN
Disruption of sensitive stages of ovary development during fetal and perinatal life can have severe and life-long consequences for a woman's reproductive life. Exposure to endocrine disrupting chemicals may affect ovarian development, leading to subsequent reproductive disorders. Here, we investigated the effect of early life exposure to defined mixtures of human-relevant endocrine disrupting chemicals on the rat ovary. We aimed to identify molecular events involved in pathogenesis of ovarian dysgenesis syndrome that have potential for future adverse outcome pathway development. We therefore focused on the ovarian proteome. Rats were exposed to a mixture of phthalates, pesticides, UV-filters, bisphenol A, butyl-paraben, and paracetamol during gestation and lactation. The chemicals were tested together or in subgroups of chemicals with anti-androgenic or estrogenic potentials at doses 450-times human exposure. Paracetamol was tested separately, at a dose of 360 mg/kg. Using shotgun proteomics on ovaries from pup day 17 offspring, we observed exposure effects on the proteomes. Nine proteins were affected in more than one exposure group and of these, we conclude that calretinin is a potential key event biomarker of early endocrine disruption in the ovary.
Asunto(s)
Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/toxicidad , Antagonistas de Andrógenos/toxicidad , Animales , Compuestos de Bencidrilo/toxicidad , Biomarcadores/metabolismo , Calbindina 2/metabolismo , Femenino , Humanos , Lactancia , Parabenos , Fenoles/toxicidad , Embarazo , Efectos Tardíos de la Exposición Prenatal , Ratas , Ratas Wistar , ReproducciónRESUMEN
Modern living challenges female reproductive health. We are witnessing a rise in reproductive disorders and drop in birth rates across the world. The reasons for these manifestations are multifaceted and most likely include continuous exposure to an ever-increasing number of chemicals. The cause-effect relationships between chemical exposure and female reproductive disorders, however, have proven problematic to determine. This has made it difficult to assess the risks chemical exposures pose to a woman's reproductive development and function. To address this challenge, this review uses the adverse outcome pathway (AOP) concept to summarize current knowledge about how chemical exposure can affect female reproductive health. We have a special focus on effects on the ovaries, since they are essential for lifelong reproductive health in women, being the source of both oocytes and several reproductive hormones, including sex steroids. The AOP framework is widely accepted as a new tool for toxicological safety assessment that enables better use of mechanistic knowledge for regulatory purposes. AOPs equip assessors and regulators with a pragmatic network of linear cause-effect relationships, enabling the use of a wider range of test method data in chemical risk assessment and regulation. Based on current knowledge, we propose ten putative AOPs relevant for female reproductive disorders that can be further elaborated and potentially be included in the AOPwiki. This effort is an important step towards better safeguarding the reproductive health of all girls and women.
Asunto(s)
Rutas de Resultados Adversos , Seguridad Química , Exposición Materna , Ovario/efectos de los fármacos , Salud Reproductiva , Animales , Enfermedades del Sistema Endocrino/inducido químicamente , Femenino , Humanos , Ratones , Enfermedades del Ovario/inducido químicamente , Ovario/fisiopatología , Embarazo , Medición de Riesgo , Pruebas de ToxicidadRESUMEN
Bisphenol A (BPA) has been widely reported to exert endocrine disrupting effects, including the induction of adipogenesis in cultured preadipocytes and intact animals. Because of the potential harm to human health, BPA is being substituted by structurally related bisphenols. Whether or not such BPA analogues are safe substitutes, however, remains largely unknown. Here, we investigated the potential of bisphenol B (BPB), bisphenol E (BPE), bisphenol F (BPF), bisphenol S (BPS), and 4-cumylphenol (4-CP) to affect lipid and hormone levels in 3 T3-L1 cells. We found that BPB, BPE, BPF, BPS, and 4-CP all affected lipid accumulation and leptin levels to the same extent and potencies as BPA. Based on these and other results, we conclude that these BPA analogues and 4-CP most likely will elicit similar effects on adipocytes as BPA. Using them to substitute BPA in products should be done with caution.
Asunto(s)
Adipocitos/efectos de los fármacos , Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Metabolismo de los Lípidos/efectos de los fármacos , Fenoles/toxicidad , Sulfonas/toxicidad , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Biomarcadores/metabolismo , Supervivencia Celular/efectos de los fármacos , Humanos , Leptina/metabolismo , Metabolismo de los Lípidos/genética , Ratones , Transcriptoma/efectos de los fármacosRESUMEN
Currently available test methods are not well-suited for the identification of chemicals that disturb hormonal processes involved in female reproductive development and function. This renders women's reproductive health at increasing risk globally, which, coupled with increasing incidence rates of reproductive disorders, is of great concern. A woman's reproductive health is largely established during embryonic and fetal development and subsequently matures during puberty. The endocrine system influences development, maturation, and function of the female reproductive system, thereby making appropriate hormone levels imperative for correct functioning of reproductive processes. It is concerning that the effects of human-made chemicals on the endocrine system and female reproductive health are poorly addressed in regulatory chemical safety assessment, partly because adequate test methods are lacking. Our EU-funded project FREIA aims to address this need by increasing understanding of how endocrine disrupting chemicals (EDCs) can impact female reproductive health. We will use this information to provide better test methods that enable fit-for-purpose chemical regulation and then share our knowledge, promote a sustainable society, and improve the reproductive health of women globally.
Asunto(s)
Disruptores Endocrinos/farmacología , Reproducción/efectos de los fármacos , Salud Reproductiva , Animales , Sistema Endocrino/efectos de los fármacos , Exposición a Riesgos Ambientales , Contaminantes Ambientales/efectos adversos , Femenino , Humanos , Pubertad/efectos de los fármacos , Medición de Riesgo , Factores de RiesgoRESUMEN
The test methods that currently exist for the identification of thyroid hormone system-disrupting chemicals are woefully inadequate. There are currently no internationally validated in vitro assays, and test methods that can capture the consequences of diminished or enhanced thyroid hormone action on the developing brain are missing entirely. These gaps put the public at risk and risk assessors in a difficult position. Decisions about the status of chemicals as thyroid hormone system disruptors currently are based on inadequate toxicity data. The ATHENA project (Assays for the identification of Thyroid Hormone axis-disrupting chemicals: Elaborating Novel Assessment strategies) has been conceived to address these gaps. The project will develop new test methods for the disruption of thyroid hormone transport across biological barriers such as the blood-brain and blood-placenta barriers. It will also devise methods for the disruption of the downstream effects on the brain. ATHENA will deliver a testing strategy based on those elements of the thyroid hormone system that, when disrupted, could have the greatest impact on diminished or enhanced thyroid hormone action and therefore should be targeted through effective testing. To further enhance the impact of the ATHENA test method developments, the project will develop concepts for better international collaboration and development in the area of thyroid hormone system disruptor identification and regulation.
Asunto(s)
Disruptores Endocrinos/toxicidad , Ensayos Analíticos de Alto Rendimiento/métodos , Hormonas Tiroideas/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Descubrimiento de Drogas , Disruptores Endocrinos/química , Humanos , Técnicas In Vitro , InternetRESUMEN
Male reproductive development is intricately dependent on fetal androgen action. Consequently, disrupted androgen action during fetal life can interfere with the development of the reproductive system resulting in adverse effects on reproductive function later in life. One biomarker used to evaluate fetal androgen action is the anogenital distance (AGD), the distance between the anus and the external genitalia. A short male AGD is strongly associated with genital malformations at birth and reproductive disorders in adulthood. AGD is therefore used as an effect readout in rodent toxicity studies aimed at testing compounds for endocrine activity and anti-androgenic properties, and in human epidemiological studies to correlate fetal exposure to endocrine disrupting chemicals to feminization of new-born boys. In this review, we have synthesized current data related to intrauterine exposure to xenobiotics and AGD measurements. We discuss the utility of AGD as a retrospective marker of in utero anti-androgenicity and as a predictive marker for male reproductive disorders, both with respect to human health and rodent toxicity studies. Finally, we highlight four areas that need addressing to fully evaluate AGD as a biomarker in both a regulatory and clinical setting.
Asunto(s)
Canal Anal/anatomía & histología , Genitales Masculinos/anatomía & histología , Efectos Tardíos de la Exposición Prenatal , Antagonistas de Andrógenos/toxicidad , Animales , Disruptores Endocrinos/toxicidad , Femenino , Humanos , Masculino , Embarazo , Roedores , Diferenciación Sexual/efectos de los fármacos , Testosterona/fisiología , Pruebas de Toxicidad , Xenobióticos/toxicidadRESUMEN
Genes related to Dmrt1, which encodes a DNA-binding DM domain transcription factor, act as triggers for primary sex determination in a broad range of metazoan species. However, this role is fulfilled in mammals by Sry, a newly evolved gene on the Y chromosome, such that Dmrt1 has become dispensable for primary sex determination and instead maintains Sertoli cell phenotype in postnatal testes. Here, we report that enforced expression of Dmrt1 in XX mouse fetal gonads using a Wt1-BAC transgene system is sufficient to drive testicular differentiation and male secondary sex development. XX transgenic fetal gonads showed typical testicular size and vasculature. Key ovarian markers, including Wnt4 and Foxl2, were repressed. Sertoli cells expressing the hallmark testis-determining gene Sox9 were formed, although they did not assemble into normal testis cords. Other bipotential lineages differentiated into testicular cell types, including steroidogenic fetal Leydig cells and non-meiotic germ cells. As a consequence, male internal and external reproductive organs developed postnatally, with an absence of female reproductive tissues. These results reveal that Dmrt1 has retained its ability to act as the primary testis-determining trigger in mammals, even though this function is no longer normally required. Thus, Dmrt1 provides a common thread in the evolution of sex determination mechanisms in metazoans.
Asunto(s)
Evolución Biológica , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones Transgénicos/metabolismo , Procesos de Determinación del Sexo/fisiología , Diferenciación Sexual/fisiología , Factores de Transcripción/metabolismo , Animales , Cromosomas Artificiales Bacterianos , Clonación Molecular , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Vectores Genéticos/genética , Células Germinativas/citología , Células Intersticiales del Testículo/citología , Masculino , Ratones , Ratones Transgénicos/genética , Microscopía Fluorescente , Reacción en Cadena en Tiempo Real de la Polimerasa , Procesos de Determinación del Sexo/genética , Diferenciación Sexual/genética , Testículo/crecimiento & desarrolloRESUMEN
Mycotoxins are fungi-born metabolites that can contaminate foods through mould-infected crops. They are a significant food/feed-safety issue across the globe and represent a substantial financial burden for the world economy. Moreover, with a changing climate and fungal biota, there is now much discussion about emerging mycotoxins that are measurable at significant levels in crops world-wide. Unfortunately, we still know very little about the bioavailability and toxic potentials of many of these less characterized mycotoxins, including the large family of enniatins. In this study, we present new occurrence data for enniatin A, A1, B, B1 and beauvericin in four Danish crops: oat, wheat, and barley from the 2010 harvest, and rye from 2011 harvest. The occurrence of the four enniatins were B > B1 > A1 > A. Enniatin B was detected in 100% of tested samples regardless of crop type. In addition to occurrence data, we report a proof-of-concept study using a human-relevant high-content hepatotoxicity, or "quadroprobe," assay to screen mycotoxins for their cytotoxic potential. The assay was sensitive for most cytotoxic compounds in the 0.009-100 µM range. Among eight tested mycotoxins (enniatin B, beauvericin, altenariol, deoxynivalenol, aflatoxin B1, andrastin A, citrinin, and penicillic acid), enniatin B and beauvericin showed significant cytotoxicity at a concentration lower than that for aflatoxin B1, which is the archetypal acute hepatotoxic and liver-carcinogenic mycotoxin. Hence, the quadroprobe hepatotoxicity assay may become a valuable assessment tool for toxicity assessment of mycotoxins in the future. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1658-1664, 2017.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Depsipéptidos/toxicidad , Grano Comestible/química , Contaminación de Alimentos/estadística & datos numéricos , Avena/química , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico por imagen , Dinamarca/epidemiología , Depsipéptidos/aislamiento & purificación , Grano Comestible/provisión & distribución , Fusarium/metabolismo , Células Hep G2 , Hordeum/química , Humanos , Incidencia , Micotoxinas/aislamiento & purificación , Micotoxinas/toxicidad , Secale/química , Pruebas de Toxicidad , Triticum/químicaRESUMEN
The issues of whether and how some organs coordinate their size and shape with the blueprint of the embryo axis, while others appear to regulate their morphogenesis autonomously, remain poorly understood. Mutations in Ift144, encoding a component of the trafficking machinery of primary cilia assembly, result in a range of embryo patterning defects, affecting the limbs, skeleton and neural system. Here, we show that embryos of the mouse mutant Ift144(twt) develop gonads that are larger than wild-type. Investigation of the early patterning of the urogenital ridge revealed that the anterior-posterior domain of the gonad/mesonephros was extended at 10.5 dpc, with no change in the length of the metanephros. In XY embryos, this extension resulted in an increase in testis cord number. Moreover, we observed a concomitant extension of the trunk axis in both sexes, with no change in the length of the tail domain or somite number. Our findings support a model in which: (1) primary cilia regulate embryonic trunk elongation; (2) the length of the trunk axis determines the size of the urogenital ridges; and (3) the gonad domain is partitioned into a number of testis cords that depends on the available space, rather than being divided a predetermined number of times to generate a specific number of cords.
Asunto(s)
Tipificación del Cuerpo/fisiología , Cilios/fisiología , Modelos Biológicos , Proteínas/metabolismo , Torso/embriología , Sistema Urogenital/embriología , Animales , Proteínas del Citoesqueleto , Femenino , Técnica del Anticuerpo Fluorescente , Procesamiento de Imagen Asistido por Computador , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Microscopía Confocal , Proteínas/genética , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
Thyroid hormone (TH) system disrupting compounds can impair brain development by perturbing TH action during critical life stages. Human exposure to TH system disrupting chemicals is therefore of great concern. To better protect humans against such chemicals, sensitive test methods that can detect effects on the developing brain are critical. Worryingly, however, current test methods are not sensitive and specific towards TH-mediated effects. To address this shortcoming, we performed RNA-sequencing of rat brains developmentally exposed to two different thyroperoxidase (TPO) inhibiting compounds, the medical drug methimazole (MMI) or the pesticide amitrole. Pregnant and lactating rats were exposed to 8 and 16â¯mg/kg/day(d) MMI or 25 and 50â¯mg/kg/d amitrole from gestational day 7 until postnatal day 16. Bulk-RNA-seq was performed on hippocampus from the 16-day old male pups. MMI and amitrole caused pronounced changes to the transcriptomes; 816 genes were differentially expressed, and 425 gene transcripts were similarly affected by both chemicals. Functional terms indicate effects from key cellular functions to changes in cell development, migration and differentiation of several cell populations. Of the total number of DEGs, 106 appeared to form a consistent transcriptional fingerprint of developmental hypothyroidism as they were similarly and dose-dependently expressed across all treatment groups. Using a filtering system, we identified 20 genes that appeared to represent the most sensitive, robust and dose-dependent markers of altered TH-mediated brain development. These markers provide inputs to the adverse outcome pathway (AOP) framework where they, in the context of linking TPO inhibiting compounds to adverse cognitive function, can be used to assess altered gene expression in the hippocampus in rat toxicity studies.
Asunto(s)
Hipocampo , Metimazol , Animales , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Metimazol/toxicidad , Embarazo , Ratas , Yoduro Peroxidasa/genética , Transcriptoma/efectos de los fármacos , Antitiroideos/toxicidad , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Inhibidores Enzimáticos/toxicidad , Inhibidores Enzimáticos/farmacologíaRESUMEN
The Adverse Outcome Pathway (AOP) framework has gained widespread acceptance in toxicological disciplines as a tool for aiding chemical hazard assessment. Despite increased activity in AOP development, progress towards a high volume of fully endorsed AOPs has been slow, partly due to the challenging task of constructing complete AOPs according to the AOP Developer's Handbook. To facilitate greater uptake of new knowledge units onto the open-source AOP-wiki platform, a pragmatic approach was recently proposed. This approach involves considering Key Event Relationships (KERs) for individual development through systematic approaches, as they represent essential units of knowledge from which causality can be inferred; from low complexity test data to adverse outcomes in intact organisms. However, more broadly adopted harmonized methodologies for KER development would be desirable. Using the AOP Developer's Handbook as a guide, a KER linking 'decreased androgen receptor (AR) activity' with 'reduced anogenital distance (AGD)' was developed to demonstrate a methodology applicable for future developments of KERs requiring systematic literature retrieval approaches.
Asunto(s)
Rutas de Resultados Adversos , Receptores Androgénicos , Receptores Androgénicos/metabolismo , Humanos , Animales , Masculino , Femenino , Canal Anal/anatomía & histología , Canal Anal/efectos de los fármacos , Medición de Riesgo , Genitales/anatomía & histología , Genitales/efectos de los fármacosRESUMEN
Introduction: Adverse Outcome Pathways (AOPs) can support both testing and assessment of endocrine disruptors (EDs). There is, however, a need for further development of the AOP framework to improve its applicability in a regulatory context. Here we have inventoried the AOP-wiki to identify all existing AOPs related to mammalian reproductive toxicity arising from disruption to the estrogen, androgen, and steroidogenesis modalities. Core key events (KEs) shared between relevant AOPs were also identified to aid in further AOP network (AOPN) development. Methods: A systematic approach using two different methods was applied to screen and search the entire AOP-wiki library. An AOPN was visualized using Cytoscape. Manual refinement was performed to remove AOPS devoid of any KEs and/or KERs. Results: Fifty-eight AOPs relevant for mammalian reproductive toxicity were originally identified, with 42 AOPs included in the final AOPN. Several of the KEs and KE relationships (KERs) described similar events and were thus merged to optimize AOPN construction. Sixteen sub-networks related to effects on hormone levels or hormone activity, cancer outcomes, male and female reproductive systems, and overall effects on fertility and reproduction were identified within the AOPN. Twenty-six KEs and 11 KERs were identified as core blocks of knowledge in the AOPN, of which 19 core KEs are already included as parameters in current OECD and US EPA test guidelines. Discussion: The AOPN highlights knowledge gaps that can be targeted for further development of a more complete AOPN that can support the identification and assessment of EDs.