RESUMEN
Structural or crystal asymmetry is a necessary condition for the emergence of zero-bias photocurrent in light detectors. Structural asymmetry has been typically achieved via p-n doping, which is a technologically complex process. Here, we propose an alternative approach to achieve zero-bias photocurrent in two-dimensional (2D) material flakes exploiting the geometrical nonequivalence of source and drain contacts. As a prototypical example, we equip a square-shaped flake of PdSe2 with mutually orthogonal metal leads. Upon uniform illumination with linearly polarized light, the device demonstrates nonzero photocurrent which flips its sign upon 90° polarization rotation. The origin of zero-bias photocurrent lies in a polarization-dependent lightning-rod effect. It enhances the electromagnetic field at one contact from the orthogonal pair and selectively activates the internal photoeffect at the respective metal-PdSe2 Schottky junction. The proposed technology of contact engineering is independent of a particular light-detection mechanism and can be extended to arbitrary 2D materials.
RESUMEN
The physics of electrons, photons, and their plasmonic interactions change dramatically when one or more dimensions are reduced to atomic-level thicknesses. For example, graphene exhibits unique electrical, plasmonic, and optical properties. Likewise, atomic-thick metal films are expected to exhibit extraordinary quantum optical properties. Several methods of growing ultrathin metal films were demonstrated, but the quality of the obtained films was much worse compared to bulk films. In this work, we propose a new method of making ultrathin gold films that are close in their properties to bulk gold films. Excellent plasmonic properties are revealed by directly observing quasi-short- and quasi-long-range plasmons in such a film via scanning near-field optical microscopy. The results pave the way for the use of ultrathin gold films in flexible and transparent nanophotonics and optoelectronic applications.
RESUMEN
Photoconductivity of novel materials is the key property of interest for design of photodetectors, optical modulators, and switches. Despite the photoconductivity of most novel 2d materials having been studied both theoretically and experimentally, the same is not true for 2d p-n junctions that are necessary blocks of most electronic devices. Here, we study the sub-terahertz photocoductivity of gapped bilayer graphene with electrically induced p-n junctions. We find a strong positive contribution from junctions to resistance, temperature resistance coefficient, and photoresistivity at cryogenic temperatures T â¼ 20 K. The contribution to these quantities from junctions exceeds strongly the bulk values at uniform channel doping even at small band gaps of â¼10 meV. We further show that positive junction photoresistance is a hallmark of interband tunneling, and not of intraband thermionic conduction. Our results point to the possibility of creating various interband tunneling devices based on bilayer graphene, including steep-switching transistors and selective sensors.
RESUMEN
Rapid progress in electrically controlled plasmonics in solids poses a question about possible effects of electronic reservoirs on the properties of plasmons. We find that plasmons in electronically open systems [i.e., in (semi)conductors connected to leads] are prone to an additional damping due to charge carrier penetration into contacts and subsequent thermalization. We develop a theory of such lead-induced damping based on the kinetic equation with microscopic boundary conditions at the interfaces, followed by perturbation theory with respect to transport nonlocality. The lifetime of the plasmon in an electronically open ballistic system appears to be finite, of the order of conductor length divided by carrier Fermi velocity. The reflection loss of the plasmon incident on the contact of the semiconductor and perfectly conducting metal also appears to be finite, of the order of Fermi velocity divided by wave phase velocity. Recent experiments on plasmon-assisted photodetection [Nat. Commun. 9, 5392 (2018)NCAOBW2041-172310.1038/s41467-018-07848-w] are discussed in light of the proposed lead-induced damping phenomenon.
RESUMEN
We report on the device model for the infrared photodetectors based on the van der Waals (vdW) heterostructures with the radiation absorbing graphene layers (GLs). These devices rely on the electron interband photoexcitation from the valence band of the GLs to the continuum states in the conduction band of the inter-GL barrier layers. We calculate the photocurrent and the GL infrared photodetector (GLIP) responsivity at weak and strong intensities of the incident radiation and conclude that the GLIPs can surpass or compete with the existing infrared and terahertz photodetectors. The obtained results can be useful for the GLIP design and optimization.
RESUMEN
The optimization of laser resonators represents a crucial issue for the design of tera-hertz semiconductor lasers with high gain and low absorption loss. In this paper, we put forward and optimize the surface plasmonic metal waveguide geometry for the recently proposed tera-hertz injection laser based on resonant radiative transitions between tunnel-coupled graphene layers. We find an optimal number of active graphene layer pairs corresponding to the maximum net modal gain. The maximum gain increases with frequency and can be as large as â¼ 500 cm-1 at 8 THz, while the threshold length of laser resonator can be as small as â¼ 50 µm. Our findings substantiate the possibility of ultra-compact voltage-tunable graphene-based lasers operating at room temperature.
RESUMEN
Surface plasmon polaritons (SPPs) give an opportunity to break the diffraction limit and design nanoscale optical components, however their practical implementation is hindered by high ohmic losses in a metal. Here, we propose a novel approach for efficient SPP amplification under electrical pumping in a deep-subwavelength metal-insulator-semiconductor waveguiding geometry and numerically demonstrate full compensation for the SPP propagation losses in the infrared at an exceptionally low pump current density of 0.8 kA/cm2. This value is an order of magnitude lower than in the previous studies owing to the thin insulator layer between a metal and a semiconductor, which allows injection of minority carriers and blocks majority carriers reducing the leakage current to nearly zero. The presented results provide insight into lossless SPP guiding and development of future high dense nanophotonic and optoelectronic circuits.
RESUMEN
We theoretically examine the effect of carrier-carrier scattering processes on the intraband radiation absorption and their contribution to the net dynamic conductivity in optically or electrically pumped graphene. We demonstrate that the radiation absorption assisted by the carrier-carrier scattering is comparable with Drude absorption due to impurity scattering and is even stronger in sufficiently clean samples. Since the intraband absorption of radiation effectively competes with its interband amplification, this can substantially affect the conditions of the negative dynamic conductivity in the pumped graphene and, hence, the interband terahertz and infrared lasing. We find the threshold values of the frequency and quasi-Fermi energy of nonequilibrium carriers corresponding to the onset of negative dynamic conductivity. The obtained results show that the effect of carrier-carrier scattering shifts the threshold frequency of the radiation amplification in pumped graphene to higher values. In particular, the negative dynamic conductivity is attainable at the frequencies above 6 THz in graphene on SiO2 substrates at room temperature. The threshold frequency can be decreased to markedly lower values in graphene structures with high-κ substrates due to screening of the carrier-carrier scattering, particularly at lower temperatures.
RESUMEN
Graphene shows strong promise for the detection of terahertz (THz) radiation due to its high carrier mobility, compatibility with on-chip waveguides and transistors, and small heat capacitance. At the same time, weak reaction of graphene's physical properties on the detected radiation can be traced down to the absence of a band gap. Here, we study the effect of electrically induced band gap on THz detection in graphene bilayer with split-gate p-n junction. We show that gap induction leads to a simultaneous increase in current and voltage responsivities. At operating temperatures of â¼25 K, the responsivity at a 20 meV band gap is from 3 to 20 times larger than that in the gapless state. The maximum voltage responsivity of our devices at 0.13 THz illumination exceeds 50 kV/W, while the noise equivalent power falls down to 36 fW/Hz1/2.
RESUMEN
Surface plasmon lasing in semiconductor gain media at far-infrared frequencies requires simultaneously long non-radiative recombination times and large plasmon propagation length. In this paper, we show that these conditions are realized in mercury-telluride quantum wells (HgTe QWs) near the topological transition. We derive the conditions of surface plasmon amplification in HgTe QWs with interband population inversion. To this end, we calculate the spatially-dispersive high-frequency conductivity of pumped HgTe QWs taking into account their realistic band structure, and compare the interband gain with Drude absorption and collisionless Landau damping. An extra necessary condition of plasmon lasing is revealed, namely, the non-equilibrium carrier density should be high enough to make the plasmon spectrum overlap with the frequency domain of interband excitations. The latter condition limits the processes of both stimulated and spontaneous plasmon emission at low temperatures, and should have a strong impact on the recombination kinetics of HgTe QWs at low temperatures.
RESUMEN
Plasmons, collective oscillations of electron systems, can efficiently couple light and electric current, and thus can be used to create sub-wavelength photodetectors, radiation mixers, and on-chip spectrometers. Despite considerable effort, it has proven challenging to implement plasmonic devices operating at terahertz frequencies. The material capable to meet this challenge is graphene as it supports long-lived electrically tunable plasmons. Here we demonstrate plasmon-assisted resonant detection of terahertz radiation by antenna-coupled graphene transistors that act as both plasmonic Fabry-Perot cavities and rectifying elements. By varying the plasmon velocity using gate voltage, we tune our detectors between multiple resonant modes and exploit this functionality to measure plasmon wavelength and lifetime in bilayer graphene as well as to probe collective modes in its moiré minibands. Our devices offer a convenient tool for further plasmonic research that is often exceedingly difficult under non-ambient conditions (e.g. cryogenic temperatures) and promise a viable route for various photonic applications.
RESUMEN
In a continuous search for the energy-efficient electronic switches, a great attention is focused on tunnel field-effect transistors (TFETs) demonstrating an abrupt dependence of the source-drain current on the gate voltage. Among all TFETs, those based on one-dimensional (1D) semiconductors exhibit the steepest current switching due to the singular density of states near the band edges, though the current in 1D structures is pretty low. In this paper, we propose a TFET based on 2D graphene bilayer which demonstrates a record steep subthreshold slope enabled by van Hove singularities in the density of states near the edges of conduction and valence bands. Our simulations show the accessibility of 3.5 × 10(4) ON/OFF current ratio with 150 mV gate voltage swing, and a maximum subthreshold slope of (20 µV/dec)(-1) just above the threshold. The high ON-state current of 0.8 mA/µm is enabled by a narrow (~0.3 eV) extrinsic band gap, while the smallness of the leakage current is due to an all-electrical doping of the source and drain contacts which suppresses the band tailing and trap-assisted tunneling.