Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Antonie Van Leeuwenhoek ; 112(1): 23-29, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30306463

RESUMEN

Plants able to establish a nitrogen-fixing root nodule symbiosis with the actinobacterium Frankia are called actinorhizal. These interactions lead to the formation of new root organs, called actinorhizal nodules, where the bacteria are hosted intracellularly and fix atmospheric nitrogen thus providing the plant with an almost unlimited source of nitrogen for its nutrition. Like other symbiotic interactions, actinorhizal nodulation involves elaborate signalling between both partners of the symbiosis, leading to specific recognition between the plant and its compatible microbial partner, its accommodation inside plant cells and the development of functional root nodules. Actinorhizal nodulation shares many features with rhizobial nodulation but our knowledge on the molecular mechanisms involved in actinorhizal nodulation remains very scarce. However recent technical achievements for several actinorhizal species are allowing major discoveries in this field. In this review, we provide an outline on signalling molecules involved at different stages of actinorhizal nodule formation and the corresponding signalling pathways and gene networks.


Asunto(s)
Bacterias Fijadoras de Nitrógeno/fisiología , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis , Bacterias Fijadoras de Nitrógeno/clasificación , Bacterias Fijadoras de Nitrógeno/genética , Bacterias Fijadoras de Nitrógeno/aislamiento & purificación , Nodulación de la Raíz de la Planta , Nódulos de las Raíces de las Plantas/fisiología , Transducción de Señal
2.
Antonie Van Leeuwenhoek ; 112(1): 75-90, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30203358

RESUMEN

Actinorhizal plants form a symbiotic association with the nitrogen-fixing actinobacteria Frankia. These plants have important economic and ecological benefits including land reclamation, soil stabilization, and reforestation. Recently, many non-Frankia actinobacteria have been isolated from actinorhizal root nodules suggesting that they might contribute to nodulation. Two Nocardia strains, BMG51109 and BMG111209, were isolated from Casuarina glauca nodules, and they induced root nodule-like structures in original host plant promoting seedling growth. The formed root nodule-like structures lacked a nodular root at the apex, were not capable of reducing nitrogen and had their cortical cells occupied with rod-shaped Nocardiae cells. Both Nocardia strains induced root hair deformation on the host plant. BMG111209 strain induced the expression of the ProCgNin:Gus gene, a plant gene involved in the early steps of the infection process and nodulation development. Nocardia strain BMG51109 produced three types of auxins (Indole-3-acetic acid [IAA], Indole-3-Byturic Acid [IBA] and Phenyl Acetic Acid [PAA]), while Nocardia BMG111209 only produced IAA. Analysis of the Nocardia genomes identified several important predicted biosynthetic gene clusters for plant phytohormones, secondary metabolites, and novel natural products. Co-infection studies showed that Nocardia strain BMG51109 plays a role as a "helper bacteria" promoting an earlier onset of nodulation. This study raises many questions on the ecological significance and functionality of Nocardia bacteria in actinorhizal symbioses.


Asunto(s)
Fagales/crecimiento & desarrollo , Nocardia/fisiología , Nódulos de las Raíces de las Plantas/microbiología , Fagales/microbiología , Ácidos Indolacéticos/metabolismo , Nocardia/genética , Nocardia/aislamiento & purificación , Reguladores del Crecimiento de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Simbiosis
3.
New Phytol ; 219(3): 1018-1030, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29790172

RESUMEN

Nitrogen-fixing filamentous Frankia colonize the root tissues of its actinorhizal host Discaria trinervis via an exclusively intercellular pathway. Here we present studies aimed at uncovering mechanisms associated with this little-researched mode of root entry, and in particular the extent to which the host plant is an active partner during this process. Detailed characterization of the expression patterns of infection-associated actinorhizal host genes has provided valuable tools to identify intercellular infection sites, thus allowing in vivo confocal microscopic studies of the early stages of Frankia colonization. The subtilisin-like serine protease gene Dt12, as well as its Casuarina glauca homolog Cg12, are specifically expressed at sites of Frankia intercellular colonization of D. trinervis outer root tissues. This is accompanied by nucleo-cytoplasmic reorganization in the adjacent host cells and major remodeling of the intercellular apoplastic compartment. These findings lead us to propose that the actinorhizal host plays a major role in modifying both the size and composition of the intercellular apoplast in order to accommodate the filamentous microsymbiont. The implications of these findings are discussed in the light of the analogies that can be made with the orchestrating role of host legumes during intracellular root hair colonization by nitrogen-fixing rhizobia.


Asunto(s)
Frankia/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Células Vegetales/microbiología , Rhamnaceae/genética , Rhamnaceae/microbiología , Subtilisinas/genética , Recuento de Colonia Microbiana , Modelos Biológicos , Regiones Promotoras Genéticas/genética , Nódulos de las Raíces de las Plantas/citología , Nódulos de las Raíces de las Plantas/microbiología , Subtilisinas/metabolismo
4.
New Phytol ; 209(1): 86-93, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26484850

RESUMEN

Although it is now well-established that decorated lipo-chitooligosaccharide Nod factors are the key rhizobial signals which initiate infection/nodulation in host legume species, the identity of the equivalent microbial signaling molecules in the Frankia/actinorhizal association remains elusive. With the objective of identifying Frankia symbiotic factors we present a novel approach based on both molecular and cellular pre-infection reporters expressed in the model actinorhizal species Casuarina glauca. By introducing the nuclear-localized cameleon Nup-YC2.1 into Casuarina glauca we show that cell-free culture supernatants of the compatible Frankia CcI3 strain are able to elicit sustained high frequency Ca(2+) spiking in host root hairs. Furthermore, an excellent correlation exists between the triggering of nuclear Ca(2+) spiking and the transcriptional activation of the ProCgNIN:GFP reporter as a function of the Frankia strain tested. These two pre-infection symbiotic responses have been used in combination to show that the signal molecules present in the Frankia CcI3 supernatant are hydrophilic, of low molecular weight and resistant to chitinase degradation. In conclusion, the biologically active symbiotic signals secreted by Frankia appear to be chemically distinct from the currently known chitin-based rhizobial/arbuscular mycorrhizal signaling molecules. Convenient bioassays in Casuarina glauca are now available for their full characterization.


Asunto(s)
Proteínas Bacterianas/genética , Calcio/metabolismo , Frankia/fisiología , Regulación de la Expresión Génica de las Plantas , Magnoliopsida/microbiología , Micorrizas/fisiología , Proteínas Bacterianas/metabolismo , Quitinasas/metabolismo , Frankia/genética , Genes Reporteros , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Magnoliopsida/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Simbiosis
5.
Plant Physiol ; 167(3): 1149-57, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25627215

RESUMEN

Actinorhizal symbioses are mutualistic interactions between plants and the soil bacteria Frankia spp. that lead to the formation of nitrogen-fixing root nodules. The plant hormone auxin has been suggested to play a role in the mechanisms that control the establishment of this symbiosis in the actinorhizal tree Casuarina glauca. Here, we analyzed the role of auxin signaling in Frankia spp.-infected cells. Using a dominant-negative version of an endogenous auxin-signaling regulator, INDOLE-3-ACETIC ACID7, we established that inhibition of auxin signaling in these cells led to increased nodulation and, as a consequence, to higher nitrogen fixation per plant even if nitrogen fixation per nodule mass was similar to that in the wild type. Our results suggest that auxin signaling in Frankia spp.-infected cells is involved in the long-distance regulation of nodulation in actinorhizal symbioses.


Asunto(s)
Fabaceae/citología , Fabaceae/microbiología , Frankia/fisiología , Ácidos Indolacéticos/metabolismo , Nodulación de la Raíz de la Planta , Nódulos de las Raíces de las Plantas/microbiología , Transducción de Señal , Secuencia de Aminoácidos , Tamaño de la Célula , Fabaceae/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Datos de Secuencia Molecular , Fijación del Nitrógeno/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta/genética , Nódulos de las Raíces de las Plantas/metabolismo , Especificidad de la Especie
6.
Nat Genet ; 39(6): 792-6, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17496893

RESUMEN

Plant roots are able to sense soil nutrient availability. In order to acquire heterogeneously distributed water and minerals, they optimize their root architecture. One poorly understood plant response to soil phosphate (P(i)) deficiency is a reduction in primary root growth with an increase in the number and length of lateral roots. Here we show that physical contact of the Arabidopsis thaliana primary root tip with low-P(i) medium is necessary and sufficient to arrest root growth. We further show that loss-of-function mutations in Low Phosphate Root1 (LPR1) and its close paralog LPR2 strongly reduce this inhibition. LPR1 was previously mapped as a major quantitative trait locus (QTL); the molecular origin of this QTL is explained by the differential allelic expression of LPR1 in the root cap. These results provide strong evidence for the involvement of the root cap in sensing nutrient deficiency, responding to it, or both. LPR1 and LPR2 encode multicopper oxidases (MCOs), highlighting the essential role of MCOs for plant development.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Oxidorreductasas/metabolismo , Fosfatos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Mapeo Cromosómico , Cromosomas de las Plantas , Clonación Molecular , Cobre/química , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Mutación/genética , Oxidorreductasas/genética , Cápsula de Raíz de Planta/química , Cápsula de Raíz de Planta/metabolismo , Raíces de Plantas/genética , Sitios de Carácter Cuantitativo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Suelo/análisis
7.
New Phytol ; 208(3): 887-903, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26096779

RESUMEN

Root nodule symbioses (RNS) allow plants to acquire atmospheric nitrogen by establishing an intimate relationship with either rhizobia, the symbionts of legumes or Frankia in the case of actinorhizal plants. In legumes, NIN (Nodule INception) genes encode key transcription factors involved in nodulation. Here we report the characterization of CgNIN, a NIN gene from the actinorhizal tree Casuarina glauca using both phylogenetic analysis and transgenic plants expressing either ProCgNIN::reporter gene fusions or CgNIN RNAi constructs. We have found that CgNIN belongs to the same phylogenetic group as other symbiotic NIN genes and CgNIN is able to complement a legume nin mutant for the early steps of nodule development. CgNIN expression is correlated with infection by Frankia, including preinfection stages in developing root hairs, and is induced by culture supernatants. Knockdown mutants were impaired for nodulation and early root hair deformation responses were severely affected. However, no mycorrhizal phenotype was observed and no induction of CgNIN expression was detected in mycorrhizas. Our results indicate that elements specifically required for nodulation include NIN and possibly related gene networks derived from the nitrate signalling pathways.


Asunto(s)
Frankia/fisiología , Magnoliopsida/genética , Proteínas de Plantas/genética , Nodulación de la Raíz de la Planta , Nódulos de las Raíces de las Plantas/microbiología , Secuencia de Aminoácidos , Fabaceae/genética , Datos de Secuencia Molecular , Micorrizas/fisiología , Homología de Secuencia de Aminoácido , Simbiosis
8.
BMC Plant Biol ; 14: 342, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25492470

RESUMEN

BACKGROUND: Trees belonging to the Casuarinaceae and Betulaceae families play an important ecological role and are useful tools in forestry for degraded land rehabilitation and reforestation. These functions are linked to their capacity to establish symbiotic relationships with a nitrogen-fixing soil bacterium of the genus Frankia. However, the molecular mechanisms controlling the establishment of these symbioses are poorly understood. The aim of this work was to identify potential transcription factors involved in the establishment and functioning of actinorhizal symbioses. RESULTS: We identified 202 putative transcription factors by in silico analysis in 40 families in Casuarina glauca (Casuarinaceae) and 195 in 35 families in Alnus glutinosa (Betulaceae) EST databases. Based on published transcriptome datasets and quantitative PCR analysis, we found that 39% and 26% of these transcription factors were regulated during C. glauca and A. glutinosa-Frankia interactions, respectively. Phylogenetic studies confirmed the presence of common key transcription factors such as NSP, NF-YA and ERN-related proteins involved in nodule formation in legumes, which confirm the existence of a common symbiosis signaling pathway in nitrogen-fixing root nodule symbioses. We also identified an actinorhizal-specific transcription factor belonging to the zinc finger C1-2i subfamily we named CgZF1 in C. glauca and AgZF1 in A. glutinosa. CONCLUSIONS: We identified putative nodulation-associated transcription factors with particular emphasis on members of the GRAS, NF-YA, ERF and C2H2 families. Interestingly, comparison of the non-legume and legume TF with signaling elements from actinorhizal species revealed a new subgroup of nodule-specific C2H2 TF that could be specifically involved in actinorhizal symbioses. In silico identification, transcript analysis, and phylogeny reconstruction of transcription factor families paves the way for the study of specific molecular regulation of symbiosis in response to Frankia infection.


Asunto(s)
Proteínas Bacterianas/genética , Frankia/genética , Magnoliopsida/microbiología , Simbiosis/genética , Alnus/microbiología , Proteínas Bacterianas/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN Complementario/genética , ADN Complementario/metabolismo , Frankia/metabolismo , Datos de Secuencia Molecular , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Análisis de Secuencia de ADN
9.
PLoS One ; 19(4): e0297547, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625963

RESUMEN

Most legumes are able to develop a root nodule symbiosis in association with proteobacteria collectively called rhizobia. Among them, the tropical species Aeschynomene evenia has the remarkable property of being nodulated by photosynthetic Rhizobia without the intervention of Nod Factors (NodF). Thereby, A. evenia has emerged as a working model for investigating the NodF-independent symbiosis. Despite the availability of numerous resources and tools to study the molecular basis of this atypical symbiosis, the lack of a transformation system based on Agrobacterium tumefaciens significantly limits the range of functional approaches. In this report, we present the development of a stable genetic transformation procedure for A. evenia. We first assessed its regeneration capability and found that a combination of two growth regulators, NAA (= Naphthalene Acetic Acid) and BAP (= 6-BenzylAminoPurine) allows the induction of budding calli from epicotyls, hypocotyls and cotyledons with a high efficiency in media containing 0,5 µM NAA (up to 100% of calli with continuous stem proliferation). To optimize the generation of transgenic lines, we employed A. tumefaciens strain EHA105 harboring a binary vector carrying the hygromycin resistance gene and the mCherry fluorescent marker. Epicotyls and hypocotyls were used as the starting material for this process. We have found that one growth medium containing a combination of NAA (0,5 µM) and BAP (2,2 µM) was sufficient to induce callogenesis and A. tumefaciens strain EHA105 was sufficiently virulent to yield a high number of transformed calli. This simple and efficient method constitutes a valuable tool that will greatly facilitate the functional studies in NodF-independent symbiosis.


Asunto(s)
Fabaceae , Fabaceae/genética , Fabaceae/microbiología , Agrobacterium tumefaciens/genética , Simbiosis/genética , Fenotipo , Verduras/genética , Transformación Genética , Plantas Modificadas Genéticamente
10.
Plant Commun ; 5(1): 100671, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553834

RESUMEN

Plant root-nodule symbiosis (RNS) with mutualistic nitrogen-fixing bacteria is restricted to a single clade of angiosperms, the Nitrogen-Fixing Nodulation Clade (NFNC), and is best understood in the legume family. Nodulating species share many commonalities, explained either by divergence from a common ancestor over 100 million years ago or by convergence following independent origins over that same time period. Regardless, comparative analyses of diverse nodulation syndromes can provide insights into constraints on nodulation-what must be acquired or cannot be lost for a functional symbiosis-and the latitude for variation in the symbiosis. However, much remains to be learned about nodulation, especially outside of legumes. Here, we employed a large-scale phylogenomic analysis across 88 species, complemented by 151 RNA-seq libraries, to elucidate the evolution of RNS. Our phylogenomic analyses further emphasize the uniqueness of the transcription factor NIN as a master regulator of nodulation and identify key mutations that affect its function across the NFNC. Comparative transcriptomic assessment revealed nodule-specific upregulated genes across diverse nodulating plants, while also identifying nodule-specific and nitrogen-response genes. Approximately 70% of symbiosis-related genes are highly conserved in the four representative species, whereas defense-related and host-range restriction genes tend to be lineage specific. Our study also identified over 900 000 conserved non-coding elements (CNEs), over 300 000 of which are unique to sampled NFNC species. NFNC-specific CNEs are enriched with the active H3K9ac mark and are correlated with accessible chromatin regions, thus representing a pool of candidate regulatory elements for genes involved in RNS. Collectively, our results provide novel insights into the evolution of nodulation and lay a foundation for engineering of RNS traits in agriculturally important crops.


Asunto(s)
Fabaceae , Simbiosis , Simbiosis/genética , Filogenia , Nitrógeno , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Fabaceae/microbiología
11.
New Phytol ; 199(4): 1012-1021, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23692063

RESUMEN

Nitrogen-fixing root nodulation is confined to four plant orders, including > 14,000 Leguminosae, one nonlegume genus Parasponia and c. 200 actinorhizal species that form symbioses with rhizobia and Frankia bacterial species, respectively. Flavonoids have been identified as plant signals and developmental regulators for nodulation in legumes and have long been hypothesized to play a critical role during actinorhizal nodulation. However, direct evidence of their involvement in actinorhizal symbiosis is lacking. Here, we used RNA interference to silence chalcone synthase, which is involved in the first committed step of the flavonoid biosynthetic pathway, in the actinorhizal tropical tree Casuarina glauca. Transformed flavonoid-deficient hairy roots were generated and used to study flavonoid accumulation and further nodulation. Knockdown of chalcone synthase expression reduced the level of specific flavonoids and resulted in severely impaired nodulation. Nodule formation was rescued by supplementing the plants with naringenin, which is an upstream intermediate in flavonoid biosynthesis. Our results provide, for the first time, direct evidence of an important role for flavonoids during the early stages of actinorhizal nodulation.


Asunto(s)
Aciltransferasas/genética , Fagaceae/enzimología , Fagaceae/genética , Flavonoides/metabolismo , Silenciador del Gen , Nodulación de la Raíz de la Planta/genética , Aciltransferasas/metabolismo , Cromatografía Líquida de Alta Presión , Flavanonas/metabolismo , Técnicas de Silenciamiento del Gen , Genes de Plantas , Fenotipo , Raíces de Plantas/citología , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Espectrometría de Masas en Tándem , Factores de Tiempo
12.
J Environ Manage ; 128: 204-9, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23747371

RESUMEN

Exotic trees were introduced in Africa to rehabilitate degraded ecosystems. Introduced species included several Australian species belonging to the Casuarinaceae family. Casuarinas trees grow very fast and are resistant to drought and high salinity. They are particularly well adapted to poor and disturbed soils thanks to their capacity to establish symbiotic associations with mycorrhizal fungi -both arbuscular and ectomycorrhizal- and with the nitrogen-fixing bacteria Frankia. These trees are now widely distributed in more than 20 African countries. Casuarina are mainly used in forestation programs to rehabilitate degraded or polluted sites, to stabilise sand dunes and to provide fuelwood and charcoal and thus contribute considerably to improving livelihoods and local economies. In this paper, we describe the geographical distribution of Casuarina in Africa, their economic and ecological value and the role of the symbiotic interactions between Casuarina, mycorrhizal fungi and Frankia.


Asunto(s)
Frankia/fisiología , Magnoliopsida/crecimiento & desarrollo , Magnoliopsida/microbiología , África , Australia , Ecología , Agricultura Forestal/métodos , Micorrizas/fisiología , Suelo , Simbiosis
13.
J Genomics ; 11: 52-57, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37915957

RESUMEN

A new Bradyrhizobium vignae strain called ISRA400 was isolated from groundnut (Arachis hypogaea L.) root nodules obtained by trapping the bacteria from soil samples collected in the Senegalese groundnut basin. In this study, we present the draft genome sequence of this strain ISRA400, which spans approximatively 7.9 Mbp and exhibits a G+C content of 63.4%. The genome analysis revealed the presence of 48 tRNA genes and one rRNA operon (16S, 23S, and 5S). The nodulation test revealed that this strain ISRA400 significantly improves the nodulation parameters and chlorophyll content of the Arachis hypogaea variety Fleur11. These findings suggest the potential of Bradyrhizobium vignae strain ISRA400 as an effective symbiotic partner for improving the growth and productivity of groundnut crop.

14.
Genes (Basel) ; 14(4)2023 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-37107555

RESUMEN

Peanuts (Arachis hypogaea L.) are an allotetraploid grain legume mainly cultivated by poor farmers in Africa, in degraded soil and with low input systems. Further understanding nodulation genetic mechanisms could be a relevant option to facilitate the improvement of yield and lift up soil without synthetic fertilizers. We used a subset of 83 chromosome segment substitution lines (CSSLs) derived from the cross between a wild synthetic tetraploid AiAd (Arachis ipaensis × Arachis duranensis)4× and the cultivated variety Fleur11, and evaluated them for traits related to BNF under shade-house conditions. Three treatments were tested: without nitrogen; with nitrogen; and without nitrogen, but with added0 Bradyrhizobium vignae strain ISRA400. The leaf chlorophyll content and total biomass were used as surrogate traits for BNF. We found significant variations for both traits specially linked to BNF, and four QTLs (quantitative trait loci) were consistently mapped. At all QTLs, the wild alleles decreased the value of the trait, indicating a negative effect on BNF. A detailed characterization of the lines carrying those QTLs in controlled conditions showed that the QTLs affected the nitrogen fixation efficiency, nodule colonization, and development. Our results provide new insights into peanut nodulation mechanisms and could be used to target BNF traits in peanut breeding programs.


Asunto(s)
Arachis , Sitios de Carácter Cuantitativo , Sitios de Carácter Cuantitativo/genética , Arachis/genética , Mapeo Cromosómico/métodos , Fijación del Nitrógeno/genética , Fitomejoramiento
15.
Appl Environ Microbiol ; 78(2): 575-80, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22101047

RESUMEN

The actinomycete genus Frankia forms nitrogen-fixing symbioses with 8 different families of actinorhizal plants, representing more than 200 different species. Very little is known about the initial molecular interactions between Frankia and host plants in the rhizosphere. Root exudates are important in Rhizobium-legume symbiosis, especially for initiating Nod factor synthesis. We measured differences in Frankia physiology after exposure to host aqueous root exudates to assess their effects on actinorhizal symbioses. Casuarina cunninghamiana root exudates were collected from plants under nitrogen-sufficient and -deficient conditions and tested on Frankia sp. strain CcI3. Root exudates increased the growth yield of Frankia in the presence of a carbon source, but Frankia was unable to use the root exudates as a sole carbon or energy source. Exposure to root exudates caused hyphal "curling" in Frankia cells, suggesting a chemotrophic response or surface property change. Exposure to root exudates altered Congo red dye binding, which indicated changes in the bacterial surface properties at the fatty acid level. Fourier transform infrared spectroscopy (FTIR) confirmed fatty acid changes and revealed further carbohydrate changes. Frankia cells preexposed to C. cunninghamiana root exudates for 6 days formed nodules on the host plant significantly earlier than control cells. These data support the hypothesis of early chemical signaling between actinorhizal host plants and Frankia in the rhizosphere.


Asunto(s)
Exudados y Transudados/metabolismo , Helechos/metabolismo , Helechos/microbiología , Frankia/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Simbiosis , Carbohidratos/análisis , Rojo Congo/metabolismo , Ácidos Grasos/análisis , Frankia/química , Frankia/crecimiento & desarrollo , Frankia/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Coloración y Etiquetado , Propiedades de Superficie
16.
Mol Plant Microbe Interact ; 24(11): 1317-24, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21585269

RESUMEN

Among infection mechanisms leading to root nodule symbiosis, the intercellular infection pathway is probably the most ancestral but also one of the least characterized. Intercellular infection has been described in Discaria trinervis, an actinorhizal plant belonging to the Rosales order. To decipher the molecular mechanisms underlying intercellular infection with Frankia bacteria, we set up an efficient genetic transformation protocol for D. trinervis based on Agrobacterium rhizogenes. We showed that composite plants with transgenic roots expressing green fluorescent protein can be specifically and efficiently nodulated by Frankia strain BCU110501. Nitrogen fixation rates and feedback inhibition of nodule formation by nitrogen were similar in control and composite plants. In order to challenge the transformation system, the MtEnod11 promoter, a gene from Medicago truncatula widely used as a marker for early infection-related symbiotic events in model legumes, was introduced in D. trinervis. MtEnod11::GUS expression was related to infection zones in root cortex and in the parenchyma of the developing nodule. The ability to study intercellular infection with molecular tools opens new avenues for understanding the evolution of the infection process in nitrogen-fixing root nodule symbioses.


Asunto(s)
Agrobacterium/fisiología , Raíces de Plantas/microbiología , Rhamnaceae/microbiología , Simbiosis , Medicago truncatula/genética , Fijación del Nitrógeno , Plantas Modificadas Genéticamente , Transformación Genética
17.
Proc Natl Acad Sci U S A ; 105(12): 4928-32, 2008 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-18316735

RESUMEN

Root endosymbioses vitally contribute to plant nutrition and fitness worldwide. Nitrogen-fixing root nodulation, confined to four plant orders, encompasses two distinct types of associations, the interaction of legumes (Fabales) with rhizobia bacteria and actinorhizal symbioses, where the bacterial symbionts are actinomycetes of the genus Frankia. Although several genetic components of the host-symbiont interaction have been identified in legumes, the genetic basis of actinorhiza formation is unknown. Here, we show that the receptor-like kinase gene SymRK, which is required for nodulation in legumes, is also necessary for actinorhiza formation in the tree Casuarina glauca. This indicates that both types of nodulation symbiosis share genetic components. Like several other legume genes involved in the interaction with rhizobia, SymRK is also required for the interaction with arbuscular mycorrhiza (AM) fungi. We show that SymRK is involved in AM formation in C. glauca as well and can restore both nodulation and AM symbioses in a Lotus japonicus symrk mutant. Taken together, our results demonstrate that SymRK functions as a vital component of the genetic basis for both plant-fungal and plant-bacterial endosymbioses and is conserved between legumes and actinorhiza-forming Fagales.


Asunto(s)
Frankia/fisiología , Micorrizas/fisiología , Raíces de Plantas/enzimología , Raíces de Plantas/microbiología , Proteínas Quinasas/metabolismo , Rhizobium/fisiología , Simbiosis , Prueba de Complementación Genética , Lotus/citología , Lotus/enzimología , Lotus/genética , Lotus/microbiología , Datos de Secuencia Molecular , Mutación/genética , Sistemas de Lectura Abierta/genética , Fenotipo , Filogenia , Proteínas de Plantas/aislamiento & purificación , Raíces de Plantas/citología , Plantas Modificadas Genéticamente , Proteínas Quinasas/aislamiento & purificación , Nódulos de las Raíces de las Plantas/citología , Nódulos de las Raíces de las Plantas/enzimología , Nódulos de las Raíces de las Plantas/microbiología , Árboles/citología , Árboles/enzimología , Árboles/microbiología
18.
Mycorrhiza ; 21(4): 315-21, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21225294

RESUMEN

The study of arbuscular mycorrhiza often requires the staining of fungal structures using specific dyes. Fluorescent dyes such as acid fuchsin and wheat germ agglutinin conjugates give excellent results, but these compounds are either hazardous or very expensive. Here, we show that a safer and inexpensive dye, Uvitex2B, can be efficiently used to stain intraradical fungal structures formed by the arbuscular mycorrhizal fungus Glomus intraradices in three plant species: carrot, Casuarina equisetifolia, and Medicago truncatula. The intensity and stability of Uvitex2B allow the acquisition of high-quality images using not only confocal laser scanning microscopy but also epifluorescence microscopy coupled with image deconvolution. Furthermore, we demonstrate that Uvitex2B and ß-glucuronidase staining are compatible and can thus be used to reveal arbuscular mycorrhizal structures in the context of promoter activation analysis.


Asunto(s)
Hongos/química , Glomeromycota/química , Micorrizas/química , Raíces de Plantas/microbiología , Coloración y Etiquetado/métodos , Daucus carota/microbiología , Colorantes Fluorescentes/química , Glomeromycota/aislamiento & purificación , Magnoliopsida/microbiología , Medicago truncatula/microbiología , Micorrizas/aislamiento & purificación , Coloración y Etiquetado/instrumentación
19.
Mol Plant Microbe Interact ; 23(6): 740-7, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20459313

RESUMEN

The MtEnod11 gene from Medicago truncatula is widely used as an early infection-related molecular marker for endosymbiotic associations involving both rhizobia and arbuscular mycorrhizal fungi. In this article, heterologous expression of the MtEnod11 promoter has been studied in two actinorhizal trees, Casuarina glauca and Allocasuarina verticillata. Transgenic C. glauca and A. verticillata expressing a ProMtEnod11::beta-glucuronidase (gus) fusion were generated and the activation of the transgene investigated in the context of the symbiotic associations with the N-fixing actinomycete Frankia and both endo- and ectomycorrhizal fungi (Glomus intraradices and Pisolithus albus, respectively). ProMtEnod11::gus expression was observed in root hairs, prenodules, and nodules and could be correlated with the infection of plant cells by Frankia spp. However, no activation of the gus reporter gene was detected prior to infection or in response to either rhizobial Nod factors or the wasp venom peptide MAS-7. Equally, ProMtEnod11::gus expression was not elicited during the symbiotic associations with either ecto- or endomycorrhizal fungi. These observations suggest that, although there is a conservation of gene regulatory pathways between legumes and actinorhizal plants in cells accommodating endosymbiotic N-fixing bacteria, the events preceding bacterial infection or related to mycorrhization appear to be less conserved.


Asunto(s)
Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta/fisiología , Regiones Promotoras Genéticas , Frankia/fisiología , Regulación Bacteriana de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/fisiología , Micorrizas/fisiología , Enfermedades de las Plantas , Nodulación de la Raíz de la Planta/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
20.
Methods Mol Biol ; 2085: 117-130, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31734921

RESUMEN

Phytohormones play a crucial role in regulating plant developmental processes. Among them, ethylene and jasmonate are known to be involved in plant defense responses to a wide range of biotic stresses as their levels increase with pathogen infection. In addition, these two phytohormones have been shown to inhibit plant nodulation in legumes. Here, exogenous salicylic acid (SA), jasmonate acid (JA), and ethephon (ET) were applied to the root system of Casuarina glauca plants before Frankia inoculation, in order to analyze their effects on the establishment of actinorhizal symbiosis. This protocol further describes how to identify putative ortholog genes involved in ethylene and jasmonate biosynthesis and/or signaling pathways in plant, using the Arabidopsis Information Resource (TAIR), Legume Information System (LIS), and Genevestigator databases. The expression of these genes in response to the bacterium Frankia was analyzed using the gene atlas for Casuarina-Frankia symbiosis (SESAM web site).


Asunto(s)
Ciclopentanos/metabolismo , Etilenos/metabolismo , Oxilipinas/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Ácido Salicílico/metabolismo , Simbiosis , Biología Computacional/métodos , Ciclopentanos/farmacología , Bases de Datos Genéticas , Relación Dosis-Respuesta a Droga , Etilenos/farmacología , Frankia/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Oxilipinas/farmacología , Desarrollo de la Planta/efectos de los fármacos , Desarrollo de la Planta/genética , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Nódulos de las Raíces de las Plantas/genética , Ácido Salicílico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA