Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Bioessays ; 46(6): e2400008, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697917

RESUMEN

Despite its uniform appearance, the cerebellar cortex is highly heterogeneous in terms of structure, genetics and physiology. Purkinje cells (PCs), the principal and sole output neurons of the cerebellar cortex, can be categorized into multiple populations that differentially express molecular markers and display distinctive physiological features. Such features include action potential rate, but also their propensity for synaptic and intrinsic plasticity. However, the precise molecular and genetic factors that correlate with the differential physiological properties of PCs remain elusive. In this article, we provide a detailed overview of the cellular mechanisms that regulate PC activity and plasticity. We further perform a pathway analysis to highlight how molecular characteristics of specific PC populations may influence their physiology and plasticity mechanisms.


Asunto(s)
Plasticidad Neuronal , Células de Purkinje , Células de Purkinje/metabolismo , Células de Purkinje/fisiología , Animales , Plasticidad Neuronal/genética , Humanos , Potenciales de Acción/fisiología , Sinapsis/fisiología , Sinapsis/metabolismo , Sinapsis/genética , Corteza Cerebelosa/citología , Corteza Cerebelosa/metabolismo , Corteza Cerebelosa/fisiología
2.
J Allergy Clin Immunol ; 151(2): 565-571.e9, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36216080

RESUMEN

BACKGROUND: The signal transducer and activator of transcription 6 (STAT6) signaling pathway plays a central role in allergic inflammation. To date, however, there have been no descriptions of STAT6 gain-of-function variants leading to allergies in humans. OBJECTIVE: We report a STAT6 gain-of-function variant associated with early-onset multiorgan allergies in a family with 3 affected members. METHODS: Exome sequencing and immunophenotyping of T-helper cell subsets were conducted. The function of the STAT6 protein was analyzed by Western blot, immunofluorescence, electrophoretic mobility shift assays, and luciferase assays. Gastric organoids obtained from the index patient were used to study downstream effector cytokines. RESULTS: We identified a heterozygous missense variant (c.1129G>A;p.Glu377Lys) in the DNA binding domain of STAT6 that was de novo in the index patient's father and was inherited by 2 of his 3 children. Severe atopic dermatitis and food allergy were key presentations. Clinical heterogeneity was observed among the affected individuals. Higher levels of peripheral blood TH2 lymphocytes were detected. The mutant STAT6 displayed a strong preference for nuclear localization, increased DNA binding affinity, and spontaneous transcriptional activity. Moreover, gastric organoids showed constitutive activation of STAT6 downstream signaling molecules. CONCLUSIONS: A germline STAT6 gain-of-function variant results in spontaneous activation of the STAT6 signaling pathway and is associated with an early-onset and severe allergic phenotype in humans. These observations enhance our knowledge of the molecular mechanisms underlying allergic diseases and will potentially contribute to novel therapeutic interventions.


Asunto(s)
Hipersensibilidad a los Alimentos , Mutación con Ganancia de Función , Niño , Humanos , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo , Citocinas/metabolismo , ADN
3.
Hum Mol Genet ; 30(18): 1711-1720, 2021 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-33909043

RESUMEN

Trichothiodystrophy (TTD) is a rare hereditary neurodevelopmental disorder defined by sulfur-deficient brittle hair and nails and scaly skin, but with otherwise remarkably variable clinical features. The photosensitive TTD (PS-TTD) forms exhibits in addition to progressive neuropathy and other features of segmental accelerated aging and is associated with impaired genome maintenance and transcription. New factors involved in various steps of gene expression have been identified for the different non-photosensitive forms of TTD (NPS-TTD), which do not appear to show features of premature aging. Here, we identify alanyl-tRNA synthetase 1 and methionyl-tRNA synthetase 1 variants as new gene defects that cause NPS-TTD. These variants result in the instability of the respective gene products alanyl- and methionyl-tRNA synthetase. These findings extend our previous observations that TTD mutations affect the stability of the corresponding proteins and emphasize this phenomenon as a common feature of TTD. Functional studies in skin fibroblasts from affected individuals demonstrate that these new variants also impact on the rate of tRNA charging, which is the first step in protein translation. The extension of reduced abundance of TTD factors to translation as well as transcription redefines TTD as a syndrome in which proteins involved in gene expression are unstable.


Asunto(s)
Alanina-ARNt Ligasa/genética , Metionina-ARNt Ligasa/genética , Síndromes de Tricotiodistrofia/genética , Alanina-ARNt Ligasa/metabolismo , Niño , Estabilidad de Enzimas/genética , Femenino , Humanos , Metionina-ARNt Ligasa/metabolismo , Síndromes de Tricotiodistrofia/enzimología , Síndromes de Tricotiodistrofia/patología , Secuenciación Completa del Genoma
4.
Genet Med ; 25(9): 100883, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37154149

RESUMEN

PURPOSE: Studies have previously implicated PRRX1 in craniofacial development, including demonstration of murine Prrx1 expression in the preosteogenic cells of the cranial sutures. We investigated the role of heterozygous missense and loss-of-function (LoF) variants in PRRX1 associated with craniosynostosis. METHODS: Trio-based genome, exome, or targeted sequencing were used to screen PRRX1 in patients with craniosynostosis; immunofluorescence analyses were used to assess nuclear localization of wild-type and mutant proteins. RESULTS: Genome sequencing identified 2 of 9 sporadically affected individuals with syndromic/multisuture craniosynostosis, who were heterozygous for rare/undescribed variants in PRRX1. Exome or targeted sequencing of PRRX1 revealed a further 9 of 1449 patients with craniosynostosis harboring deletions or rare heterozygous variants within the homeodomain. By collaboration, 7 additional individuals (4 families) were identified with putatively pathogenic PRRX1 variants. Immunofluorescence analyses showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localization. Of patients with variants considered likely pathogenic, bicoronal or other multisuture synostosis was present in 11 of 17 cases (65%). Pathogenic variants were inherited from unaffected relatives in many instances, yielding a 12.5% penetrance estimate for craniosynostosis. CONCLUSION: This work supports a key role for PRRX1 in cranial suture development and shows that haploinsufficiency of PRRX1 is a relatively frequent cause of craniosynostosis.


Asunto(s)
Craneosinostosis , Proteínas de Homeodominio , Animales , Humanos , Ratones , Secuencia de Bases , Suturas Craneales/patología , Craneosinostosis/genética , Genes Homeobox , Proteínas de Homeodominio/genética , Penetrancia
5.
J Allergy Clin Immunol ; 150(1): 146-156.e10, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35026208

RESUMEN

BACKGROUND: Indolent systemic mastocytosis (ISM) is characterized by pathologic accumulation of mast cells. The mechanism behind its phenotypic heterogeneity is not well understood. Interaction of mast cells with other immune cells might cause systemic inflammation and thereby associated symptoms. OBJECTIVE: We investigated peripheral leukocyte compartments and serum immune proteome in ISM. METHODS: Peripheral blood leukocyte phenotyping using flow cytometry in a cohort of 18 adults with ISM and 12 healthy controls. Targeted proteomics was performed to measure 169 proteins associated with inflammation on serum of another 20 ISM patients and 20 healthy controls. RESULTS: Proportions of plasmacytoid dendritic cells and monocytes were significantly decreased while TH2 cells were increased in peripheral blood of ISM patients. Furthermore, a shift from naive to memory T cells was observed. Hierarchical clustering of the serum proteome revealed 2 distinct subgroups within ISM patients. In subgroup A (n = 8), 62 proteins were significantly overexpressed, whereas those of subgroup B (n = 12) were comparable to healthy controls. Patients in subgroup A displayed upregulated signaling pathways downstream of Toll-like receptor 4, TNF-α, and IFN-γ. Fatigue was more often present in subgroup A compared to B (75% vs 33% respectively, P = .06). CONCLUSIONS: Altered distribution of leukocyte subsets and a proinflammatory proteome were observed in subsequent 2 cohorts of ISM patients. We hypothesize that neoplastic mast cells recruit and activate plasmacytoid dendritic cells, monocytes, and T cells, leading to a vicious cycle of inflammation.


Asunto(s)
Mastocitosis Sistémica , Mastocitosis , Adulto , Humanos , Inflamación/complicaciones , Leucocitos/patología , Mastocitosis/diagnóstico , Mastocitosis Sistémica/diagnóstico , Proteoma
6.
Am J Hum Genet ; 105(2): 434-440, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31374204

RESUMEN

Brittle and "tiger-tail" hair is the diagnostic hallmark of trichothiodystrophy (TTD), a rare recessive disease associated with a wide spectrum of clinical features including ichthyosis, intellectual disability, decreased fertility, and short stature. As a result of premature abrogation of terminal differentiation, the hair is brittle and fragile and contains reduced cysteine content. Hypersensitivity to UV light is found in about half of individuals with TTD; all of these individuals harbor bi-allelic mutations in components of the basal transcription factor TFIIH, and these mutations lead to impaired nucleotide excision repair and basal transcription. Different genes have been found to be associated with non-photosensitive TTD (NPS-TTD); these include MPLKIP (also called TTDN1), GTF2E2 (also called TFIIEß), and RNF113A. However, a relatively large group of these individuals with NPS-TTD have remained genetically uncharacterized. Here we present the identification of an NPS-TTD-associated gene, threonyl-tRNA synthetase (TARS), found by next-generation sequencing of a group of uncharacterized individuals with NPS-TTD. One individual has compound heterozygous TARS variants, c.826A>G (p.Lys276Glu) and c.1912C>T (p.Arg638∗), whereas a second individual is homozygous for the TARS variant: c.680T>C (p.Leu227Pro). We showed that these variants have a profound effect on TARS protein stability and enzymatic function. Our results expand the spectrum of genes involved in TTD to include genes implicated in amino acid charging of tRNA, which is required for the last step in gene expression, namely protein translation. We previously proposed that some of the TTD-specific features derive from subtle transcription defects as a consequence of unstable transcription factors. We now extend the definition of TTD from a transcription syndrome to a "gene-expression" syndrome.


Asunto(s)
Enfermedades del Cabello/patología , Mutación , Treonina-ARNt Ligasa/genética , Síndromes de Tricotiodistrofia/patología , Alelos , Secuencia de Aminoácidos , Estudios de Casos y Controles , Enfermedades del Cabello/genética , Humanos , Fenotipo , Homología de Secuencia , Factor de Transcripción TFIIH/genética , Síndromes de Tricotiodistrofia/genética
7.
Am J Hum Genet ; 104(4): 709-720, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30905399

RESUMEN

The Mediator is an evolutionarily conserved, multi-subunit complex that regulates multiple steps of transcription. Mediator activity is regulated by the reversible association of a four-subunit module comprising CDK8 or CDK19 kinases, together with cyclin C, MED12 or MED12L, and MED13 or MED13L. Mutations in MED12, MED13, and MED13L were previously identified in syndromic developmental disorders with overlapping phenotypes. Here, we report CDK8 mutations (located at 13q12.13) that cause a phenotypically related disorder. Using whole-exome or whole-genome sequencing, and by international collaboration, we identified eight different heterozygous missense CDK8 substitutions, including 10 shown to have arisen de novo, in 12 unrelated subjects; a recurrent mutation, c.185C>T (p.Ser62Leu), was present in five individuals. All predicted substitutions localize to the ATP-binding pocket of the kinase domain. Affected individuals have overlapping phenotypes characterized by hypotonia, mild to moderate intellectual disability, behavioral disorders, and variable facial dysmorphism. Congenital heart disease occurred in six subjects; additional features present in multiple individuals included agenesis of the corpus callosum, ano-rectal malformations, seizures, and hearing or visual impairments. To evaluate the functional impact of the mutations, we measured phosphorylation at STAT1-Ser727, a known CDK8 substrate, in a CDK8 and CDK19 CRISPR double-knockout cell line transfected with wild-type (WT) or mutant CDK8 constructs. These experiments demonstrated a reduction in STAT1 phosphorylation by all mutants, in most cases to a similar extent as in a kinase-dead control. We conclude that missense mutations in CDK8 cause a developmental disorder that has phenotypic similarity to syndromes associated with mutations in other subunits of the Mediator kinase module, indicating probable overlap in pathogenic mechanisms.


Asunto(s)
Quinasa 8 Dependiente de Ciclina/genética , Discapacidades del Desarrollo/genética , Complejo Mediador/genética , Mutación Missense , Encéfalo/anomalías , Niño , Preescolar , Ciclina C/genética , Quinasas Ciclina-Dependientes/genética , Exoma , Femenino , Cardiopatías Congénitas/genética , Heterocigoto , Humanos , Lactante , Discapacidad Intelectual/genética , Masculino , Mutación , Fenotipo , Fosforilación , Síndrome
8.
Genet Med ; 24(10): 2051-2064, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35833929

RESUMEN

PURPOSE: Although haploinsufficiency of ANKRD11 is among the most common genetic causes of neurodevelopmental disorders, the role of rare ANKRD11 missense variation remains unclear. We characterized clinical, molecular, and functional spectra of ANKRD11 missense variants. METHODS: We collected clinical information of individuals with ANKRD11 missense variants and evaluated phenotypic fit to KBG syndrome. We assessed pathogenicity of variants through in silico analyses and cell-based experiments. RESULTS: We identified 20 unique, mostly de novo, ANKRD11 missense variants in 29 individuals, presenting with syndromic neurodevelopmental disorders similar to KBG syndrome caused by ANKRD11 protein truncating variants or 16q24.3 microdeletions. Missense variants significantly clustered in repression domain 2 at the ANKRD11 C-terminus. Of the 10 functionally studied missense variants, 6 reduced ANKRD11 stability. One variant caused decreased proteasome degradation and loss of ANKRD11 transcriptional activity. CONCLUSION: Our study indicates that pathogenic heterozygous ANKRD11 missense variants cause the clinically recognizable KBG syndrome. Disrupted transrepression capacity and reduced protein stability each independently lead to ANKRD11 loss-of-function, consistent with haploinsufficiency. This highlights the diagnostic relevance of ANKRD11 missense variants, but also poses diagnostic challenges because the KBG-associated phenotype may be mild and inherited pathogenic ANKRD11 (missense) variants are increasingly observed, warranting stringent variant classification and careful phenotyping.


Asunto(s)
Anomalías Múltiples , Enfermedades del Desarrollo Óseo , Discapacidad Intelectual , Proteínas Represoras , Anomalías Dentarias , Anomalías Múltiples/genética , Enfermedades del Desarrollo Óseo/etiología , Enfermedades del Desarrollo Óseo/genética , Deleción Cromosómica , Facies , Humanos , Discapacidad Intelectual/genética , Mutación Missense , Fenotipo , Complejo de la Endopetidasa Proteasomal/genética , Proteínas Represoras/genética , Anomalías Dentarias/diagnóstico , Factores de Transcripción/genética
9.
Asian Pac J Allergy Immunol ; 40(4): 422-434, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36681659

RESUMEN

BACKGROUND: Neanderthals were a species of archaic humans that became extinct around 40,000 years ago. Modern humans have inherited 1-6% of Neanderthal DNA as a result of interbreeding. These inherited Neanderthal genes have paradoxical influences, while some can provide protection to viral infections, some others are associated with autoimmune/auto-inflammatory diseases. OBJECTIVE: We aim to investigate whether genetic variants with strong detrimental effects on the function of the immune system could have potentially contributed to the extinction of the Neanderthal population. METHODS: We used the publically available genome information from an Altai Neanderthal and filtered for potentially damaging variants present in genes associated with inborn errors of immunity (IEI) and checked whether these variants were present in the genomes of the Denisovan, Vindija and Chagyrskaya Neanderthals. RESULTS: We identified 24 homozygous variants and 15 heterozygous variants in IEI-related genes in the Altai Neanderthal. Two homozygous variants in the UNC13D gene and one variant in the MOGS gene were present in all archaic genomes. Defects in the UNC13D gene are known to cause a severe and often fatal disease called hemophagocytic lymphohistiocystosis (HLH). One of these variants p.(N943S) has been reported in patients with HLH. Variants in MOGS are associated with glycosylation defects in the immune system affecting the susceptibility for infections. CONCLUSIONS: Although the exact functional impact of these three variants needs further elucidation, we speculate that they could have resulted in an increased susceptibility to severe diseases and may have contributed to the extinction of Neanderthals after exposure to specific infections.


Asunto(s)
Hombre de Neandertal , Humanos , Animales , Hombre de Neandertal/genética , Genoma , Genoma Humano , Proteínas de la Membrana/genética
10.
Hum Mol Genet ; 28(15): 2501-2513, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31067316

RESUMEN

Craniosynostosis, the premature ossification of cranial sutures, is a developmental disorder of the skull vault, occurring in approximately 1 in 2250 births. The causes are heterogeneous, with a monogenic basis identified in ~25% of patients. Using whole-genome sequencing, we identified a novel, de novo variant in BCL11B, c.7C>A, encoding an R3S substitution (p.R3S), in a male patient with coronal suture synostosis. BCL11B is a transcription factor that interacts directly with the nucleosome remodelling and deacetylation complex (NuRD) and polycomb-related complex 2 (PRC2) through the invariant proteins RBBP4 and RBBP7. The p.R3S substitution occurs within a conserved amino-terminal motif (RRKQxxP) of BCL11B and reduces interaction with both transcriptional complexes. Equilibrium binding studies and molecular dynamics simulations show that the p.R3S substitution disrupts ionic coordination between BCL11B and the RBBP4-MTA1 complex, a subassembly of the NuRD complex, and increases the conformational flexibility of Arg-4, Lys-5 and Gln-6 of BCL11B. These alterations collectively reduce the affinity of BCL11B p.R3S for the RBBP4-MTA1 complex by nearly an order of magnitude. We generated a mouse model of the BCL11B p.R3S substitution using a CRISPR-Cas9-based approach, and we report herein that these mice exhibit craniosynostosis of the coronal suture, as well as other cranial sutures. This finding provides strong evidence that the BCL11B p.R3S substitution is causally associated with craniosynostosis and confirms an important role for BCL11B in the maintenance of cranial suture patency.


Asunto(s)
Ensamble y Desensamble de Cromatina , Suturas Craneales/crecimiento & desarrollo , Craneosinostosis/metabolismo , Mutación Missense , Nucleosomas/metabolismo , Osteogénesis , Proteínas Represoras/genética , Proteínas Supresoras de Tumor/genética , Animales , Suturas Craneales/metabolismo , Craneosinostosis/genética , Craneosinostosis/fisiopatología , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Humanos , Lactante , Masculino , Ratones , Unión Proteica , Conformación Proteica , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Proteína 4 de Unión a Retinoblastoma/metabolismo , Transactivadores/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/fisiología , Población Blanca , Secuenciación Completa del Genoma
12.
Genet Med ; 22(9): 1498-1506, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32499606

RESUMEN

PURPOSE: Enrichment of heterozygous missense and truncating SMAD6 variants was previously reported in nonsyndromic sagittal and metopic synostosis, and interaction of SMAD6 variants with a common polymorphism nearBMP2 (rs1884302) was proposed to contribute to inconsistent penetrance. We determined the occurrence of SMAD6 variants in all types of craniosynostosis, evaluated the impact of different missense variants on SMAD6 function, and tested independently whether rs1884302 genotype significantly modifies the phenotype. METHODS: We performed resequencing of SMAD6 in 795 unsolved patients with any type of craniosynostosis and genotyped rs1884302 in SMAD6-positive individuals and relatives. We examined the inhibitory activity and stability of SMAD6 missense variants. RESULTS: We found 18 (2.3%) different rare damaging SMAD6 variants, with the highest prevalence in metopic synostosis (5.8%) and an 18.3-fold enrichment of loss-of-function variants comparedwith gnomAD data (P < 10-7). Combined with eight additional variants, ≥20/26 were transmitted from an unaffected parent but rs1884302 genotype did not predict phenotype. CONCLUSION: Pathogenic SMAD6 variants substantially increase the risk of both nonsyndromic and syndromic presentations of craniosynostosis, especially metopic synostosis. Functional analysis is important to evaluate missense variants. Genotyping of rs1884302 is not clinically useful. Mechanisms to explain the remarkable diversity of phenotypes associated with SMAD6 variants remain obscure.


Asunto(s)
Craneosinostosis , Craneosinostosis/genética , Genotipo , Humanos , Mutación Missense/genética , Penetrancia , Fenotipo , Proteína smad6/genética
13.
Hum Mol Genet ; 26(23): 4689-4698, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28973399

RESUMEN

The rare recessive developmental disorder Trichothiodystrophy (TTD) is characterized by brittle hair and nails. Patients also present a variable set of poorly explained additional clinical features, including ichthyosis, impaired intelligence, developmental delay and anemia. About half of TTD patients are photosensitive due to inherited defects in the DNA repair and transcription factor II H (TFIIH). The pathophysiological contributions of unrepaired DNA lesions and impaired transcription have not been dissected yet. Here, we functionally characterize the consequence of a homozygous missense mutation in the general transcription factor II E, subunit 2 (GTF2E2/TFIIEß) of two unrelated non-photosensitive TTD (NPS-TTD) families. We demonstrate that mutant TFIIEß strongly reduces the total amount of the entire TFIIE complex, with a remarkable temperature-sensitive transcription defect, which strikingly correlates with the phenotypic aggravation of key clinical symptoms after episodes of high fever. We performed induced pluripotent stem (iPS) cell reprogramming of patient fibroblasts followed by in vitro erythroid differentiation to translate the intriguing molecular defect to phenotypic expression in relevant tissue, to disclose the molecular basis for some specific TTD features. We observed a clear hematopoietic defect during late-stage differentiation associated with hemoglobin subunit imbalance. These new findings of a DNA repair-independent transcription defect and tissue-specific malfunctioning provide novel mechanistic insight into the etiology of TTD.


Asunto(s)
Factores de Transcripción TFII/genética , Síndromes de Tricotiodistrofia/genética , Diferenciación Celular/genética , Reprogramación Celular/genética , ADN Helicasas/genética , Reparación del ADN , Femenino , Humanos , Células Madre Pluripotentes Inducidas/patología , Masculino , Mutación , Mutación Missense , Especificidad de Órganos , Linaje , Factores de Transcripción TFII/metabolismo , Transcripción Genética , Síndromes de Tricotiodistrofia/metabolismo , Síndromes de Tricotiodistrofia/patología
14.
Am J Hum Genet ; 97(3): 378-88, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26340333

RESUMEN

Human ZIC1 (zinc finger protein of cerebellum 1), one of five homologs of the Drosophila pair-rule gene odd-paired, encodes a transcription factor previously implicated in vertebrate brain development. Heterozygous deletions of ZIC1 and its nearby paralog ZIC4 on chromosome 3q25.1 are associated with Dandy-Walker malformation of the cerebellum, and loss of the orthologous Zic1 gene in the mouse causes cerebellar hypoplasia and vertebral defects. We describe individuals from five families with heterozygous mutations located in the final (third) exon of ZIC1 (encoding four nonsense and one missense change) who have a distinct phenotype in which severe craniosynostosis, specifically involving the coronal sutures, and variable learning disability are the most characteristic features. The location of the nonsense mutations predicts escape of mutant ZIC1 transcripts from nonsense-mediated decay, which was confirmed in a cell line from an affected individual. Both nonsense and missense mutations are associated with altered and/or enhanced expression of a target gene, engrailed-2, in a Xenopus embryo assay. Analysis of mouse embryos revealed a localized domain of Zic1 expression at embryonic days 11.5-12.5 in a region overlapping the supraorbital regulatory center, which patterns the coronal suture. We conclude that the human mutations uncover a previously unsuspected role for Zic1 in early cranial suture development, potentially by regulating engrailed 1, which was previously shown to be critical for positioning of the murine coronal suture. The diagnosis of a ZIC1 mutation has significant implications for prognosis and we recommend genetic testing when common causes of coronal synostosis have been excluded.


Asunto(s)
Codón sin Sentido/genética , Craneosinostosis/genética , Regulación del Desarrollo de la Expresión Génica/genética , Discapacidades para el Aprendizaje/genética , Fenotipo , Factores de Transcripción/genética , Animales , Secuencia de Bases , Clonación Molecular , Femenino , Proteínas de Homeodominio/metabolismo , Humanos , Hibridación in Situ , Cariotipificación , Masculino , Ratones , Datos de Secuencia Molecular , Mutación Missense/genética , Proteínas del Tejido Nervioso/metabolismo , Linaje , Análisis de Secuencia de ADN , Xenopus laevis
16.
Genet Med ; 20(11): 1405-1413, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29543231

RESUMEN

PURPOSE: The zone of polarizing activity regulatory sequence (ZRS) is an enhancer that regulates sonic hedgehog during embryonic limb development. Recently, mutations in a noncoding evolutionary conserved sequence 500 bp upstream of the ZRS, termed the pre-ZRS (pZRS), have been associated with polydactyly in dogs and humans. Here, we report the first case of triphalangeal thumb-polysyndactyly syndrome (TPT-PS) to be associated with mutations in this region and show via mouse enhancer assays how this mutation leads to ectopic expression throughout the developing limb bud. METHODS: We used linkage analysis, whole-exome sequencing, Sanger sequencing, fluorescence in situ hybridization, multiplex ligation-dependent probe amplification, single-nucleotide polymorphism array, and a mouse transgenic enhancer assay. RESULTS: Ten members of a TPT-PS family were included in this study. The mutation was linked to chromosome 7q36 (LOD score 3.0). No aberrations in the ZRS could be identified. A point mutation in the pZRS (chr7:156585476G>C; GRCh37/hg19) was detected in all affected family members. Functional characterization using a mouse transgenic enhancer essay showed extended ectopic expression dispersed throughout the entire limb bud (E11.5). CONCLUSION: Our work describes the first mutation in the pZRS to be associated with TPT-PS and provides functional evidence that this mutation leads to ectopic expression of this enhancer within the developing limb.


Asunto(s)
Anomalías Congénitas/genética , Predisposición Genética a la Enfermedad , Proteínas Hedgehog/genética , Disostosis Mandibulofacial/genética , Proteínas de la Membrana/genética , Animales , Cromosomas Humanos Par 7/genética , Elementos de Facilitación Genéticos/genética , Femenino , Regulación de la Expresión Génica/genética , Ligamiento Genético , Humanos , Hibridación Fluorescente in Situ , Esbozos de los Miembros/fisiopatología , Masculino , Ratones , Linaje , Mutación Puntual/genética , Polimorfismo de Nucleótido Simple , Secuenciación del Exoma
18.
J Med Genet ; 54(4): 260-268, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27884935

RESUMEN

BACKGROUND: Craniosynostosis, the premature fusion of one or more cranial sutures, occurs in ∼1 in 2250 births, either in isolation or as part of a syndrome. Mutations in at least 57 genes have been associated with craniosynostosis, but only a minority of these are included in routine laboratory genetic testing. METHODS: We used exome or whole genome sequencing to seek a genetic cause in a cohort of 40 subjects with craniosynostosis, selected by clinical or molecular geneticists as being high-priority cases, and in whom prior clinically driven genetic testing had been negative. RESULTS: We identified likely associated mutations in 15 patients (37.5%), involving 14 different genes. All genes were mutated in single families, except for IL11RA (two families). We classified the other positive diagnoses as follows: commonly mutated craniosynostosis genes with atypical presentation (EFNB1, TWIST1); other core craniosynostosis genes (CDC45, MSX2, ZIC1); genes for which mutations are only rarely associated with craniosynostosis (FBN1, HUWE1, KRAS, STAT3); and known disease genes for which a causal relationship with craniosynostosis is currently unknown (AHDC1, NTRK2). In two further families, likely novel disease genes are currently undergoing functional validation. In 5 of the 15 positive cases, the (previously unanticipated) molecular diagnosis had immediate, actionable consequences for either genetic or medical management (mutations in EFNB1, FBN1, KRAS, NTRK2, STAT3). CONCLUSIONS: This substantial genetic heterogeneity, and the multiple actionable mutations identified, emphasises the benefits of exome/whole genome sequencing to identify causal mutations in craniosynostosis cases for which routine clinical testing has yielded negative results.


Asunto(s)
Craneosinostosis/genética , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Neoplasias/genética , Craneosinostosis/diagnóstico , Craneosinostosis/patología , Exoma/genética , Pruebas Genéticas , Humanos , Mutación , Valor Predictivo de las Pruebas
19.
Hum Mol Genet ; 24(17): 4848-61, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26056227

RESUMEN

Miles-Carpenter syndrome (MCS) was described in 1991 as an XLID syndrome with fingertip arches and contractures and mapped to proximal Xq. Patients had microcephaly, short stature, mild spasticity, thoracic scoliosis, hyperextendable MCP joints, rocker-bottom feet, hyperextended elbows and knees. A mutation, p.L66H, in ZC4H2, was identified in a XLID re-sequencing project. Additional screening of linked families and next generation sequencing of XLID families identified three ZC4H2 mutations: p.R18K, p.R213W and p.V75in15aa. The families shared some relevant clinical features. In silico modeling of the mutant proteins indicated all alterations would destabilize the protein. Knockout mutations in zc4h2 were created in zebrafish and homozygous mutant larvae exhibited abnormal swimming, increased twitching, defective eye movement and pectoral fin contractures. Because several of the behavioral defects were consistent with hyperactivity, we examined the underlying neuronal defects and found that sensory neurons and motoneurons appeared normal. However, we observed a striking reduction in GABAergic interneurons. Analysis of cell-type-specific markers showed a specific loss of V2 interneurons in the brain and spinal cord, likely arising from mis-specification of neural progenitors. Injected human wt ZC4H2 rescued the mutant phenotype. Mutant zebrafish injected with human p.L66H or p.R213W mRNA failed to be rescued, while the p.R18K mRNA was able to rescue the interneuron defect. Our findings clearly support ZC4H2 as a novel XLID gene with a required function in interneuron development. Loss of function of ZC4H2 thus likely results in altered connectivity of many brain and spinal circuits.


Asunto(s)
Proteínas Portadoras/genética , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Interneuronas/metabolismo , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Biología Computacional , Femenino , Expresión Génica , Genes Ligados a X , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Mutación , Proteínas Nucleares , Especificidad de Órganos/genética , Linaje , Pez Cebra
20.
Hum Mutat ; 37(8): 732-6, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27158814

RESUMEN

TCF12-related craniosynostosis can be caused by small heterozygous loss-of-function mutations in TCF12. Large intragenic rearrangements, however, have not been described yet. Here, we present the identification of four large rearrangements in TCF12 causing TCF12-related craniosynostosis. Whole-genome sequencing was applied on the DNA of 18 index cases with coronal synostosis and their family members (43 samples in total). The data were analyzed using an autosomal-dominant disease model. Structural variant analysis reported intragenic exon deletions (of sizes 84.9, 8.6, and 5.4 kb) in TCF12 in three different families. The results were confirmed by deletion-specific PCR and dideoxy-sequence analysis. Separately, targeted sequencing of the TCF12 genomic region in a patient with coronal synostosis identified a tandem duplication of 11.3 kb. The pathogenic effect of this duplication was confirmed by cDNA analysis. These findings indicate the importance of screening for larger rearrangements in patients suspected to have TCF12-related craniosynostosis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Craneosinostosis/genética , Análisis de Secuencia de ADN/métodos , Eliminación de Secuencia , Secuencias Repetidas en Tándem , Secuencia de Bases , Exones , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Mutación , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA