Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Environ Sci Technol ; 56(24): 17615-17625, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36445185

RESUMEN

Changes in sulfate (SO42-) deposition have been linked to changes in mercury (Hg) methylation in peatlands and water quality in freshwater catchments. There is little empirical evidence, however, of how quickly methyl-Hg (MeHg, a bioaccumulative neurotoxin) export from catchments might change with declining SO42- deposition. Here, we present responses in total Hg (THg), MeHg, total organic carbon, pH, and SO42- export from a peatland-dominated catchment as a function of changing SO42- deposition in a long-term (1998-2011), whole-ecosystem, control-impact experiment. Annual SO42- deposition to half of a 2-ha peatland was experimentally increased 6-fold over natural levels and then returned to ambient levels in two phases. Sulfate additions led to a 5-fold increase in monthly flow-weighted MeHg concentrations and yields relative to a reference catchment. Once SO42- additions ceased, MeHg concentrations in the outflow streamwater returned to pre-SO42- addition levels within 2 years. The decline in streamwater MeHg was proportional to the change in the peatland area no longer receiving experimental SO42- inputs. Importantly, net demethylation and increased sorption to peat hastened the return of MeHg to baseline levels beyond purely hydrological flushing. Overall, we present clear empirical evidence of rapid and proportionate declines in MeHg export from a peatland-dominated catchment when SO42- deposition declines.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Ecosistema , Sulfatos , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Mercurio/análisis , Óxidos de Azufre
2.
Environ Sci Technol ; 54(22): 14265-14274, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33138371

RESUMEN

Methylmercury (MeHg) is a bioaccumulative neurotoxin produced by certain sulfate-reducing bacteria and other anaerobic microorganisms. Because microorganisms differ in their capacity to methylate mercury, the abundance and distribution of methylating populations may determine MeHg production in the environment. We compared rates of MeHg production and the distribution of hgcAB genes in epilimnetic sediments from a freshwater lake that were experimentally amended with sulfate levels from 7 to 300 mg L-1. The most abundant hgcAB sequences were associated with clades of Methanomicrobia, sulfate-reducing Deltaproteobacteria, Spirochaetes, and unknown environmental sequences. The hgcAB+ communities from higher sulfate amendments were less diverse and had relatively more Deltaproteobacteria, whereas the communities from lower amendments were more diverse with a larger proportion of hgcAB sequences affiliated with other clades. Potential methylation rate constants varied 52-fold across the experiment. Both potential methylation rate constants and % MeHg were the highest in sediments from the lowest sulfate amendments, which had the most diverse hgcAB+ communities and relatively fewer hgcAB genes from clades associated with sulfate reduction. Although pore water sulfide concentration covaried with hgcAB diversity across our experimental sulfate gradient, major changes in the community of hgcAB+ organisms occurred prior to a significant buildup of sulfide in pore waters. Our results indicate that methylating communities dominated by diverse anaerobic microorganisms that do not reduce sulfate can produce MeHg as effectively as communities dominated by sulfate-reducing populations.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Bacterias/genética , Sedimentos Geológicos , Lagos , Mercurio/análisis , Sulfatos
3.
Ecol Appl ; 27(1): 321-336, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28052501

RESUMEN

Under oxygenated conditions, sulfate is relatively non-toxic to aquatic plants. However, in water-saturated soils, which are usually anoxic, sulfate can be reduced to toxic sulfide. Although the direct effects of sulfate and sulfide on the physiology of a few plant species have been studied in some detail, their cumulative effects on a plant's life cycle through inhibition of seed germination, seedling survival, growth, and seed production have been less well studied. We investigated the effect of sulfate and sulfide on the life cycle of wild rice (Zizania palustris L.) in hydroponic solutions and in outdoor mesocosms with sediment from a wild rice lake. In hydroponic solutions, sulfate had no effect on seed germination or juvenile seedling growth and development, but sulfide greatly reduced juvenile seedling growth and development at concentrations greater than 320 µg/L. In outdoor mesocosms, sulfate additions to overlying water increased sulfide production in sediments. Wild rice seedling emergence, seedling survival, biomass growth, viable seed production, and seed mass all declined with sulfate additions and hence sulfide concentrations in sediment. These declines grew steeper during the course of the 5 yr of the mesocosm experiment and wild rice populations became extinct in most tanks with concentrations of 250 mg SO4 /L or greater in the overlying water. Iron sulfide precipitated on the roots of wild rice plants, especially at high sulfate application rates. These precipitates, or the encroachment of reducing conditions that they indicate, may impede nutrient uptake and be partly responsible for the reduced seed production and viability.


Asunto(s)
Germinación/efectos de los fármacos , Poaceae/efectos de los fármacos , Plantones/efectos de los fármacos , Semillas/efectos de los fármacos , Sulfatos/efectos adversos , Sulfuros/efectos adversos , Contaminantes Químicos del Agua/efectos adversos , Sedimentos Geológicos/análisis , Hidroponía , Poaceae/crecimiento & desarrollo , Poaceae/fisiología , Plantones/crecimiento & desarrollo , Semillas/crecimiento & desarrollo
4.
Environ Sci Technol ; 48(12): 6533-43, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24819278

RESUMEN

Human activities over the last several centuries have transferred vast quantities of mercury (Hg) from deep geologic stores to actively cycling earth-surface reservoirs, increasing atmospheric Hg deposition worldwide. Understanding the magnitude and fate of these releases is critical to predicting how rates of atmospheric Hg deposition will respond to future emission reductions. The most recently compiled global inventories of integrated (all-time) anthropogenic Hg releases are dominated by atmospheric emissions from preindustrial gold/silver mining in the Americas. However, the geophysical evidence for such large early emissions is equivocal, because most reconstructions of past Hg-deposition have been based on lake-sediment records that cover only the industrial period (1850-present). Here we evaluate historical changes in atmospheric Hg deposition over the last millennium from a suite of lake-sediment cores collected from remote regions of the globe. Along with recent measurements of Hg in the deep ocean, these archives indicate that atmospheric Hg emissions from early mining were modest as compared to more recent industrial-era emissions. Although large quantities of Hg were used to extract New World gold and silver beginning in the 16th century, a reevaluation of historical metallurgical methods indicates that most of the Hg employed was not volatilized, but rather was immobilized in mining waste.


Asunto(s)
Atmósfera/química , Sedimentos Geológicos/química , Oro/aislamiento & purificación , Industrias , Lagos/química , Mercurio/análisis , Minería , Plata/aislamiento & purificación , Contaminantes Atmosféricos/análisis , Américas , Geografía , Actividades Humanas , Humanos , Contaminantes Químicos del Agua/análisis
5.
Environ Sci Technol ; 46(12): 6663-71, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22578022

RESUMEN

Between 2001 and 2008 we experimentally manipulated atmospheric sulfate-loading to a small boreal peatland and monitored the resulting short and long-term changes in methylmercury (MeHg) production. MeHg concentrations and %MeHg (fraction of total-Hg (Hg(T)) present as MeHg) in the porewaters of the experimental treatment reached peak values within a week of sulfate addition and then declined as the added sulfate disappeared. MeHg increased cumulatively over time in the solid-phase peat, which acted as a sink for newly produced MeHg. In 2006 a "recovery" treatment was created by discontinuing sulfate addition to a portion of the experimentally treated section to assess how MeHg production might respond to decreased sulfate loads. Four years after sulfate additions ceased, MeHg concentrations and %MeHg had declined significantly from 2006 values in porewaters and peat, but remained elevated relative to control levels. Mosquito larvae collected from each treatment at the end of the experiment exhibited Hg(T) concentrations reflective of MeHg levels in the peat and porewaters where they were collected. The proportional responses of invertebrate Hg(T) to sulfate deposition rates demonstrate that further controls on sulfur emissions may represent an additional means of mitigating Hg contamination in fish and wildlife across low-sulfur landscapes.


Asunto(s)
Compuestos de Metilmercurio/análisis , Sulfitos/análisis , Humedales
6.
Environ Toxicol Chem ; 38(6): 1231-1244, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30901093

RESUMEN

It is well established that sulfide can be toxic to rooted aquatic plants. However, a detailed description of the effects of cumulative sulfate loads on sulfide and iron (Fe) porewater geochemistry, plant exposure, and ecological response is lacking. Over 4 yr, we experimentally manipulated sulfate loads to self-perpetuating wild rice (Zizania palustris) populations and monitored increases in the ratio of sulfur (S) to Fe in sediment across a range of sulfide loading rates driven by overlying water sulfate. Because natural settings are complicated by ongoing Fe and S loads from surface and groundwater, this experimental setting provides a tractable system to describe the impacts of increased S loading on Fe-S porewater geochemistry. In the experimental mesocosms, the rate of sulfide accumulation in bulk sediment increased linearly with overlying water sulfate concentration up to 300 µg-SO4 cm-3 . Seedling survival at the beginning of the annual life cycle and seed mass and maturation at the end of the annual life cycle all decreased at porewater sulfide concentrations between 0.4 and 0.7 µg cm-3 . Changes to porewater sulfide, plant emergence, and plant nutrient uptake during seed production were closely related to the ratio of S to Fe in sediment. A mass balance analysis showed that porewater sulfide remained a small and relatively transient phase compared to sulfate in the overlying water and Fe in the sediment solid phase. The results illuminate the evolution of the geochemical setting and timescales over which 4 yr of cumulative sulfate loading resulted in a wholesale shift from Fe-dominated to sulfide-dominated porewater chemistry. This shift was accompanied by detrimental effects to, and eventual extirpation of, self-perpetuating wild rice populations. Environ Toxicol Chem 2019;38:1231-1244. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Asunto(s)
Agua Dulce/química , Sedimentos Geológicos/análisis , Sulfatos/análisis , Sulfuros/análisis , Humedales , Hierro/análisis , Desarrollo de la Planta/efectos de los fármacos , Poaceae/efectos de los fármacos , Poaceae/crecimiento & desarrollo , Porosidad , Reproducción/efectos de los fármacos , Agua/química , Contaminantes Químicos del Agua/toxicidad
7.
Environ Pollut ; 154(1): 3-11, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18262318

RESUMEN

Patterns of mercury (Hg) speciation were examined in four Minnesota streams ranging from the main-stem Mississippi River to small tributaries in the basin. Filtered phase concentrations of methylmercury (MeHg), inorganic Hg (IHg), and dissolved organic carbon (DOC) were higher in all streams during a major summertime runoff event, and DOC was enriched with MeHg but not with IHg. Particulate-phase MeHg and IHg concentrations generally increased with total suspended solids (TSS) concentrations but the event data did not diverge greatly from the non-event data, suggesting that sources of suspended sediments in these streams did not vary significantly between event and non-event samplings. The dissolved fractions (filtered concentration/unfiltered concentration) of both MeHg and IHg increased with increasing DOC concentrations, but varied inversely with TSS concentrations. While MeHg typically constitutes only a minor portion of the total Hg (THg) in these streams, this contribution is not constant and can vary greatly over time in response to watershed inputs.


Asunto(s)
Monitoreo del Ambiente/métodos , Mercurio/análisis , Ríos/química , Estaciones del Año , Contaminantes Químicos del Agua/análisis , Carbono/análisis , Compuestos de Metilmercurio/análisis , Minnesota , Material Particulado , Lluvia
8.
Ambio ; 36(1): 45-61, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17408190

RESUMEN

In the past, human activities often resulted in mercury releases to the biosphere with little consideration of undesirable consequences for the health of humans and wildlife. This paper outlines the pathways through which humans and wildlife are exposed to mercury. Fish consumption is the major route of exposure to methylmercury. Humans can also receive toxic doses of mercury through inhalation of elevated concentrations of gaseous elemental mercury. We propose that any effective strategy for reducing mercury exposures requires an examination of the complete life cycle of mercury. This paper examines the life cycle of mercury from a global perspective and then identifies several approaches to measuring the benefits of reducing mercury exposure, policy options for reducing Hg emissions, possible exposure reduction mechanisms, and issues associated with mercury risk assessment and communication for different populations.


Asunto(s)
Comercio , Ecosistema , Exposición a Riesgos Ambientales , Contaminación Ambiental/efectos adversos , Contaminación Ambiental/análisis , Contaminación Ambiental/prevención & control , Mercurio/química , Factores Socioeconómicos , Conservación de los Recursos Naturales/estadística & datos numéricos , Análisis Costo-Beneficio , Explotaciones Pesqueras/estadística & datos numéricos , Combustibles Fósiles/estadística & datos numéricos , Humanos , Minería/estadística & datos numéricos , Política Pública
9.
Sci Total Environ ; 368(1): 138-48, 2006 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16257039

RESUMEN

Previous studies have identified flooded landscapes (e.g., wetlands, impoundments) as sites of elevated methylmercury (MeHg) production. Here we report MeHg and total Hg (THg) concentrations and mass loadings in rivers in Minnesota during major flooding episodes in the summer of 2002. Frequent intense precipitation events throughout the summer resulted in extraordinarily wet conditions in east-central and northwestern Minnesota. Streamflow remained at record-setting high levels in many rivers and streams in these regions for several weeks. We observed high concentrations of MeHg (>1.4 ng/L) accompanied by high MeHg/THg ratios (0.39 to 0.50) in the Roseau River in northwestern Minnesota and in the Elk and Rum Rivers in east-central Minnesota. Very high MeHg mass loadings were observed in the Mississippi River just upstream of Minneapolis on July 17 (51 g MeHg/day) and July 23 (42 g MeHg/day), when MeHg concentrations at this site were 0.89 and 0.99 ng/L, respectively. The elevated MeHg concentrations in the Roseau River were associated with low dissolved oxygen and high dissolved reactive phosphorus concentrations, both of which are characteristic of anoxic waters. These rivers drain landscapes containing varying amounts of wetlands, and some of the MeHg discharged is thought to have been flushed from anoxic wetland soils. In addition, the flooding of vast areas of normally dry land surfaces probably also resulted in increased MeHg production, adding to the quantities of MeHg exported from these watersheds. Changing climate patterns are expected to result in more frequent heavy precipitation and flooding events in Minnesota. Our results suggest that as flooding and wet conditions in this region increase, the production of MeHg and its export from terrestrial areas to surface waters will increase also.


Asunto(s)
Mercurio/análisis , Compuestos de Metilmercurio/análisis , Contaminantes Químicos del Agua/análisis , Desastres , Monitoreo del Ambiente , Minnesota , Lluvia , Ríos
10.
Environ Pollut ; 161: 252-60, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21683488

RESUMEN

Data from 104 sediment cores from the Great Lakes and "inland lakes" in the region were compiled to assess historical and recent changes in mercury (Hg) deposition. The lower Great Lakes showed sharp increases in Hg loading c. 1850-1950 from point-source water dischargers, with marked decreases during the past half century associated with effluent controls and decreases in the industrial use of Hg. In contrast, Lake Superior and inland lakes exhibited a pattern of Hg loading consistent with an atmospheric source - gradual increases followed by recent (post-1980) decreases. Variation in sedimentary Hg flux among inland lakes was primarily attributed to the ratio of watershed area:lake area, and secondarily to a lake's proximity to emission sources. A consistent region-wide decrease (∼20%) of sediment-Hg flux suggests that controls on local and regional atmospheric Hg emissions have been effective in decreasing the supply of Hg to Lake Superior and inland lakes.


Asunto(s)
Sedimentos Geológicos/química , Mercurio/análisis , Contaminantes Químicos del Agua/análisis , Atmósfera/química , Monitoreo del Ambiente , Great Lakes Region , Ontario , Contaminación Química del Agua/estadística & datos numéricos , Tiempo (Meteorología)
11.
Environ Sci Technol ; 40(12): 3800-6, 2006 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-16830545

RESUMEN

Atmospheric mercury is the dominant Hg source to fish in northern Minnesota and elsewhere. However, atmospherically derived Hg must be methylated prior to accumulating in fish. Sulfate-reducing bacteria are thought to be the primary methylators of Hg in the environment. Previous laboratory and field mesocosm studies have demonstrated an increase in methylmercury (MeHg) levels in sediment and peatland porewaters following additions of sulfate. In the current ecosystem-scale study, sulfate was added to half of an experimental wetland at the Marcell Experimental Forest located in northeastern Minnesota, increasing annual sulfate load by approximately four times relative to the control half of the wetland. Sulfate was added on four separate occasions during 2002 and delivered via a sprinkler system constructed on the southeast half (1.0 ha) of the S6 experimental wetland. MeHg levels were monitored in porewater and in outflow from the wetland. Prior to the first sulfate addition, MeHg concentrations (filtered, 0.7 microm) were not statistically different between the control (0.47 +/- 0.10 ng L(-1), n = 12; mean +/- one standard error) and experimental 0.52 +/- 0.05 ng L(-1), n = 18) halves. Following the first addition in May 2002, MeHg porewater concentrations increased to 1.63 +/- 0.27 ng L(-1) two weeks after the addition, a 3-fold increase. Subsequent additions in July and September 2002 did not raise porewater MeHg, but the applied sulfate was not observed in porewaters 24 h after addition. MeHg concentrations in outflow from the wetland also increased leading to an estimated 2.4x increase of MeHg flux from the wetland. Our results demonstrate enhanced methylation and increased MeHg concentrations within the wetland and in outflow from the wetland suggesting that decreasing sulfate deposition rates would lower MeHg export from wetlands.


Asunto(s)
Ecosistema , Mercurio/metabolismo , Compuestos de Metilmercurio/metabolismo , Sulfatos/metabolismo , Monitoreo del Ambiente , Compuestos de Metilmercurio/análisis , Minnesota , Sphagnopsida , Sulfatos/análisis , Tracheophyta , Contaminantes Químicos del Agua/análisis
12.
Environ Sci Technol ; 38(19): 4921-7, 2004 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15506181

RESUMEN

Mercury (Hg) and methylmercury (MeHg) are flushed from watersheds during hydrological events, contaminating downstream surface waters and resident fish populations. We monitored total mercury (THg), MeHg, and ancillary water chemistry parameters in two streams (Cedar Creek and Trott Brook) in east-central Minnesota on a weekly or semiweekly basis from April through October 2003. Heavy precipitation in late June resulted in discrete episodes of high concentrations (>1.2 ng/L) of MeHg in both streams in early July. The MeHg/THg ratio increased from 0.15 to 0.36 in Cedar Creek and from 0.13 to 0.46 in Trott Brook during the event. The high MeHg concentrations were accompanied by low dissolved oxygen concentrations and increased concentrations of dissolved organic carbon, Mn, Fe, and orthophosphate. A prolonged absence of precipitation during August and early September brought stream levels back to baseflow values, and MeHg concentrations decreased to less than 0.1 ng/L. These results suggest that warm-weather, high-discharge events are the primary route of export of MeHg from these watersheds, and baseflow contributes much less MeHg to downstream waters. The redox water chemistry during the,events sampled here suggests that MeHg in these streams is discharged from wetland areas where anoxic/anaerobic conditions prevail.


Asunto(s)
Compuestos de Metilmercurio/análisis , Compuestos de Metilmercurio/química , Contaminantes del Agua/análisis , Monitoreo del Ambiente , Minnesota , Oxidación-Reducción , Lluvia , Ríos , Estaciones del Año , Temperatura , Agua/química , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA