Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Immunol ; 198(4): 1616-1626, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28062701

RESUMEN

Human infections with highly pathogenic avian influenza A (H5N1) virus are frequently fatal but the mechanisms of disease remain ill-defined. H5N1 infection is associated with intense production of proinflammatory cytokines, but whether this cytokine storm is the main cause of fatality or is a consequence of extensive virus replication that itself drives disease remains controversial. Conventional intratracheal inoculation of a liquid suspension of H5N1 influenza virus in nonhuman primates likely results in efficient clearance of virus within the upper respiratory tract and rarely produces severe disease. We reasoned that small particle aerosols of virus would penetrate the lower respiratory tract and blanket alveoli where target cells reside. We show that inhalation of aerosolized H5N1 influenza virus in cynomolgus macaques results in fulminant pneumonia that rapidly progresses to acute respiratory distress syndrome with a fatal outcome reminiscent of human disease. Molecular imaging revealed intense lung inflammation coincident with massive increases in proinflammatory proteins and IFN-α in distal airways. Aerosolized H5N1 exposure decimated alveolar macrophages, which were widely infected and caused marked influx of interstitial macrophages and neutrophils. Extensive infection of alveolar epithelial cells caused apoptosis and leakage of albumin into airways, reflecting loss of epithelial barrier function. These data establish inhalation of aerosolized virus as a critical source of exposure for fatal human infection and reveal that direct viral effects in alveoli mediate H5N1 disease. This new nonhuman primate model will advance vaccine and therapeutic approaches to prevent and treat human disease caused by highly pathogenic avian influenza viruses.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/virología , Neumonía Viral/virología , Alveolos Pulmonares/virología , Síndrome de Dificultad Respiratoria/virología , Replicación Viral , Aerosoles , Células Epiteliales Alveolares/inmunología , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/virología , Animales , Células Cultivadas , Citocinas/biosíntesis , Citocinas/inmunología , Modelos Animales de Enfermedad , Inmunidad Innata/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Pulmón/inmunología , Pulmón/virología , Macaca fascicularis , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/patología , Macrófagos Alveolares/virología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/fisiopatología , Neumonía Viral/inmunología , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/fisiopatología
2.
Eur J Immunol ; 47(11): 1925-1935, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28667761

RESUMEN

The contribution of macrophages in the gastrointestinal tract to disease control or progression in HIV infection remains unclear. To address this question, we analyzed CD163+ macrophages in ileum and mesenteric lymph nodes (LN) from SIV-infected rhesus macaques with dichotomous expression of controlling MHC class I alleles predicted to be SIV controllers or progressors. Infection induced accumulation of macrophages into gut mucosa in the acute phase that persisted in progressors but was resolved in controllers. In contrast, macrophage recruitment to mesenteric LNs occurred only transiently in acute infection irrespective of disease outcome. Persistent gut macrophage accumulation was associated with CD163 expression on α4ß7+ CD16+ blood monocytes and correlated with epithelial damage. Macrophages isolated from intestine of progressors had reduced phagocytic function relative to controllers and uninfected macaques, and the proportion of phagocytic macrophages negatively correlated with mucosal epithelial breach, lamina propria Escherichia coli density, and plasma virus burden. Macrophages in intestine produced low levels of cytokines regardless of disease course, while mesenteric LN macrophages from progressors became increasingly responsive as infection advanced. These data indicate that noninflammatory CD163+ macrophages accumulate in gut mucosa in progressive SIV infection in response to intestinal damage but fail to adequately phagocytose debris, potentially perpetuating their recruitment.


Asunto(s)
Mucosa Intestinal/inmunología , Macrófagos/inmunología , Fagocitosis/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Animales , Movimiento Celular/inmunología , Progresión de la Enfermedad , Ganglios Linfáticos/inmunología , Macaca mulatta , Virus de la Inmunodeficiencia de los Simios
3.
Eur J Immunol ; 46(2): 446-54, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26549608

RESUMEN

The relationship between recruitment of mononuclear phagocytes to lymphoid and gut tissues and disease in HIV and SIV infection remains unclear. To address this question, we conducted cross-sectional analyses of dendritic cell (DC) subsets and CD163(+) macrophages in lymph nodes (LNs) and ileum of rhesus macaques with acute and chronic SIV infection and AIDS. In LNs significant differences were only evident when comparing uninfected and AIDS groups, with loss of myeloid DCs and CD103(+) DCs from peripheral and mesenteric LNs, respectively, and accumulation of plasmacytoid DCs and macrophages in mesenteric LNs. In contrast, there were fourfold more macrophages in ileum lamina propria in macaques with AIDS compared with chronic infection, and this increased to 40-fold in Peyer's patches. Gut macrophages exceeded plasmacytoid DCs and CD103(+) DCs by ten- to 17-fold in monkeys with AIDS but were at similar low frequencies as DCs in chronic infection. Gut macrophages in macaques with AIDS expressed IFN-α and TNF-α consistent with cell activation. CD163(+) macrophages also accumulated in gut mucosa in acute infection but lacked expression of IFN-α and TNF-α. These data reveal a relationship between inflammatory macrophage accumulation in gut mucosa and disease and suggest a role for macrophages in AIDS pathogenesis.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/inmunología , Células Dendríticas/inmunología , Mucosa Intestinal/inmunología , Macaca mulatta , Macrófagos/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Enfermedad Aguda , Animales , Movimiento Celular , Células Cultivadas , Enfermedad Crónica , Estudios Transversales , Células Dendríticas/virología , Humanos , Interferón-alfa/metabolismo , Macrófagos/virología , Factor de Necrosis Tumoral alfa/metabolismo
4.
Harmful Algae ; 108: 102080, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34588116

RESUMEN

Monitoring of cyanobacterial bloom biomass in large lakes at high resolution is made possible by remote sensing. However, monitoring cyanobacterial toxins is only feasible with grab samples, which, with only sporadic sampling, results in uncertainties in the spatial distribution of toxins. To address this issue, we conducted two intensive "HABs Grabs" of microcystin (MC)-producing Microcystis blooms in the western basin of Lake Erie. These were one-day sampling events during August of 2018 and 2019 in which 100 and 172 grab samples were collected, respectively, within a six-hour window covering up to 2,270 km2 and analyzed using consistent methods to estimate the total mass of MC. The samples were analyzed for 57 parameters, including toxins, nutrients, chlorophyll, and genomics. There were an estimated 11,513 kg and 30,691 kg of MCs in the western basin during the 2018 and 2019 HABs Grabs, respectively. The bloom boundary poses substantial issues for spatial assessments because MC concentration varied by nearly two orders of magnitude over very short distances. The MC to chlorophyll ratio (MC:chl) varied by a factor up to 5.3 throughout the basin, which creates challenges for using MC:chl to predict MC concentrations. Many of the biomass metrics strongly correlated (r > 0.70) with each other except chlorophyll fluorescence and phycocyanin concentration. While MC and chlorophyll correlated well with total phosphorus and nitrogen concentrations, MC:chl correlated with dissolved inorganic nitrogen. More frequent MC data collection can overcome these issues, and models need to account for the MC:chl spatial heterogeneity when forecasting MCs.


Asunto(s)
Cianobacterias , Microcystis , Floraciones de Algas Nocivas , Lagos , Fósforo
5.
J Biol Chem ; 284(15): 9955-64, 2009 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-19211560

RESUMEN

Pseudomonas aeruginosa has the capacity to invade lung epithelial cells by co-opting the intrinsic endocytic properties of lipid rafts, which are rich in cholesterol, sphingolipids, and proteins, such as caveolin-1 and -2. We compared intratracheal Pseudomonas infection in wild type and caveolin-deficient mice to investigate the role of caveolin proteins in the pathogenesis of Pseudomonas pneumonia. Unlike wild type mice, which succumb to pneumonia, caveolin-deficient mice are resistant to Pseudomonas. We observed that Pseudomonas invasion of lung epithelial cells is dependent on caveolin-2 but not caveolin-1. Phosphorylation of caveolin-2 by Src family kinases is an essential event for Pseudomonas invasion. Our studies also reveal the existence of a distinct signaling mechanism in lung epithelial cells mediated by COOH-terminal Src kinase (Csk) that negatively regulates Pseudomonas invasion. Csk migrates to lipid raft domains, where it decreases phosphorylation of caveolin-2 by inactivating c-Src. Whereas Pseudomonas co-opts the endocytic properties of caveolin-2 for invasion, there also exists in these cells an intrinsic Csk-dependent cellular defense mechanism aimed at impairing this activity. The success of Pseudomonas in co-opting lipid raft-mediated endocytosis to invade lung epithelial cells may depend on the relative strengths of these counteracting signaling activities.


Asunto(s)
Células Epiteliales/microbiología , Pulmón/microbiología , Microdominios de Membrana/metabolismo , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Animales , Proteína Tirosina Quinasa CSK , Caveolinas/metabolismo , Movimiento Celular , Endocitosis , Ratones , Ratones Noqueados , Microscopía Confocal , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas/metabolismo , Factores de Tiempo , Familia-src Quinasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA