Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Am Chem Soc ; 143(44): 18481-18489, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34723512

RESUMEN

Cyclotides are plant-derived peptides with complex structures shaped by their head-to-tail cyclic backbone and cystine knot core. These structural features underpin the native bioactivities of cyclotides, as well as their beneficial properties as pharmaceutical leads, including high proteolytic stability and cell permeability. However, their inherent structural complexity presents a challenge for cyclotide engineering, particularly for accessing libraries of sufficient chemical diversity to design potent and selective cyclotide variants. Here, we report a strategy using mRNA display enabling us to select potent cyclotide-based FXIIa inhibitors from a library comprising more than 1012 members based on the cyclotide scaffold of Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II). The most potent and selective inhibitor, cMCoFx1, has a pM inhibitory constant toward FXIIa with greater than three orders of magnitude selectivity over related serine proteases, realizing specific inhibition of the intrinsic coagulation pathway. The cocrystal structure of cMCoFx1 and FXIIa revealed interactions at several positions across the contact interface that conveyed high affinity binding, highlighting that such cyclotides are attractive cystine knot scaffolds for therapeutic development.


Asunto(s)
Proteínas Sanguíneas/farmacología , Ciclotidas/farmacología , Factor XIIa/metabolismo , Proteínas Sanguíneas/química , Ciclotidas/química , Factor XIIa/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos
2.
Angew Chem Int Ed Engl ; 59(28): 11273-11277, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32270580

RESUMEN

Ruthenium-catalysed azide-alkyne cycloaddition (RuAAC) provides access to 1,5-disubstituted 1,2,3-triazole motifs in peptide engineering applications. However, investigation of this motif as a disulfide mimetic in cyclic peptides has been limited, and the structural consequences remain to be studied. We report synthetic strategies to install various triazole linkages into cyclic peptides through backbone cyclisation and RuAAC cross-linking reactions. These linkages were evaluated in four serine protease inhibitors based on sunflower trypsin inhibitor-1. NMR and X-ray crystallography revealed exceptional consensus of bridging distance and backbone conformations (RMSD<0.5 Å) of the triazole linkages compared to the parent disulfide molecules. The triazole-bridged peptides also displayed superior half-lives in liver S9 stability assays compared to disulfide-bridged peptides. This work establishes a foundation for the application of 1,5-disubstituted 1,2,3-triazoles as disulfide mimetics.


Asunto(s)
Disulfuros/química , Imitación Molecular , Péptidos Cíclicos/química , Triazoles/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Ciclización , Resonancia Magnética Nuclear Biomolecular , Rutenio/química
3.
Biochemistry ; 58(21): 2524-2533, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31058493

RESUMEN

Sunflower trypsin inhibitor (SFTI-1) is a 14 amino acid serine protease inhibitor. The dual antiparallel ß-sheet arrangement of SFTI-1 is stabilized by an N-terminal-C-terminal backbone cyclization and a further disulfide bridge to form a final bicyclic structure. This constrained structure is further rigidified by an extensive network of internal hydrogen bonds. Thus, the structure of SFTI-1 in solution resembles the protease-bound structure, reducing the entropic penalty upon protease binding. When cleaved at the scissile bond, it is thought that the rigidifying features of SFTI-1 maintain its structure, allowing the scissile bond to be reformed. The lack of structural plasticity for SFTI-1 is proposed to favor initial protease binding and continued occupancy in the protease active site, resulting in an equilibrium between the cleaved and uncleaved inhibitor in the presence of a protease. We have determined, at 1.15 Å resolution, the X-ray crystal structures of complexes between human kallikrein-related peptidase 4 (KLK4) and SFTI-FCQR(Asn14) and between KLK4 and an acyclic form of the same inhibitor, SFTI-FCQR(Asn14)[1,14], with the latter displaying a cleaved scissile bond. Structural analysis and MD simulations together reveal the roles of the altered contact sequence, intramolecular hydrogen bonding network, and backbone cyclization in altering the state of SFTI's scissile bond ligation at the protease active site. Taken together, the data presented reveal insights into the role of dynamics in the standard-mechanism inhibition and suggest that modifications on the non-contact strand may be a useful, underexplored approach for generating further potent or selective SFTI-based inhibitors against members of the serine protease family.


Asunto(s)
Calicreínas/química , Péptidos Cíclicos/química , Proteínas de Plantas/química , Inhibidores de Serina Proteinasa/química , Animales , Dominio Catalítico , Cristalografía por Rayos X , Ciclización , Escherichia coli/metabolismo , Humanos , Enlace de Hidrógeno , Calicreínas/antagonistas & inhibidores , Calicreínas/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Péptidos Cíclicos/metabolismo , Péptidos Cíclicos/farmacología , Proteínas de Plantas/farmacología , Unión Proteica , Conformación Proteica en Lámina beta , Inhibidores de Serina Proteinasa/farmacología , Spodoptera/citología , Spodoptera/metabolismo , Transfección
4.
Chembiochem ; 20(1): 46-50, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30225958

RESUMEN

Urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) are two serine proteases that contribute to initiating fibrinolysis by activating plasminogen. uPA is also an important tumour-associated protease due to its role in extracellular matrix remodelling. Overexpression of uPA has been identified in several different cancers and uPA inhibition has been reported as a promising therapeutic strategy. Although several peptide-based uPA inhibitors have been developed, the extent to which uPA tolerates different tetrapeptide sequences that span the P1-P4 positions remains to be thoroughly explored. In this study, we screened a sequence-defined peptide aldehyde library against uPA and tPA. Preferred sequences from the library screen yielded potent inhibitors for uPA, led by Ac-GTAR-H (Ki =18 nm), but not for tPA. Additionally, synthetic peptide substrates corresponding to preferred inhibitor sequences were cleaved with high catalytic efficiency by uPA but not by tPA. These findings provide new insights into the binding specificity of uPA and tPA and the relative activity of tetrapeptide inhibitors and substrates against these enzymes.


Asunto(s)
Aldehídos/química , Inhibidores Enzimáticos/química , Péptidos/química , Activador de Tejido Plasminógeno/química , Activador de Plasminógeno de Tipo Uroquinasa/química , Aldehídos/síntesis química , Dominio Catalítico , Inhibidores Enzimáticos/síntesis química , Humanos , Biblioteca de Péptidos , Péptidos/síntesis química , Especificidad por Sustrato , Activador de Tejido Plasminógeno/antagonistas & inhibidores , Activador de Plasminógeno de Tipo Uroquinasa/antagonistas & inhibidores
5.
J Biol Chem ; 291(30): 15778-87, 2016 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-27226591

RESUMEN

Glucagon-like peptide-1 (GLP-1) signaling through the glucagon-like peptide 1 receptor (GLP-1R) is a key regulator of normal glucose metabolism, and exogenous GLP-1R agonist therapy is a promising avenue for the treatment of type 2 diabetes mellitus. To date, the development of therapeutic GLP-1R agonists has focused on producing drugs with an extended serum half-life. This has been achieved by engineering synthetic analogs of GLP-1 or the more stable exogenous GLP-1R agonist exendin-4 (Ex-4). These synthetic peptide hormones share the overall structure of GLP-1 and Ex-4, with a C-terminal helical segment and a flexible N-terminal tail. Although numerous studies have investigated the molecular determinants underpinning GLP-1 and Ex-4 binding and signaling through the GLP-1R, these have primarily focused on the length and composition of the N-terminal tail or on how to modulate the helicity of the full-length peptides. Here, we investigate the effect of C-terminal truncation in GLP-1 and Ex-4 on the cAMP pathway. To ensure helical C-terminal regions in the truncated peptides, we produced a series of chimeric peptides combining the N-terminal portion of GLP-1 or Ex-4 and the C-terminal segment of the helix-promoting peptide α-conotoxin pl14a. The helicity and structures of the chimeric peptides were confirmed using circular dichroism and NMR, respectively. We found no direct correlation between the fractional helicity and potency in signaling via the cAMP pathway. Rather, the most important feature for efficient receptor binding and signaling was the C-terminal helical segment (residues 22-27) directing the binding of Phe(22) into a hydrophobic pocket on the GLP-1R.


Asunto(s)
Conotoxinas/química , Péptido 1 Similar al Glucagón/química , Péptidos/química , Proteínas Recombinantes de Fusión/química , Ponzoñas/química , Animales , Células CHO , Conotoxinas/genética , Cricetinae , Cricetulus , Exenatida , Péptido 1 Similar al Glucagón/genética , Humanos , Péptidos/genética , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/genética , Ponzoñas/genética
6.
Biopolymers ; 108(1)2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27487329

RESUMEN

Cyclotides are plant-derived host defense peptides displaying exceptional stability due to their cyclic cystine knot comprising three intertwined disulfide bonds and a cyclic backbone. Their six conserved cysteine residues are separated by backbone loops with diverse sequences. Prototypical cyclotides from the Möbius (kalata B1) and trypsin inhibitor (MCoTI-II) subfamilies lack sequence homology with one another, but both are able to penetrate cells, apparently via different mechanisms. To delineate the influence of the sequences of the loops on the structure and cell internalization of these two cyclotide subfamilies, a series of Möbius/trypsin inhibitor loop-chimeras of kalata B1 and MCoTI-II were synthesized, and structurally and functionally characterized. NMR analysis showed that the structural fold of the majority of chimeric peptides was minimally affected by the loop substitutions. Substituting loops 3, 5, or 6 of MCoTI-II into the corresponding loops of kalata B1 attenuated its hemolytic and cytotoxic activities, and greatly reduced its cell-penetrating properties. On the other hand, replacing loops of MCoTI-II with the corresponding loops of kalata B1 did not introduce cytotoxicity into the chimeras. Loops 2, 3, and 4 of MCoTI-II were found to contribute little to cell-penetrating properties. Overall, this study provides valuable insights into the structural basis for the hemolytic, cytotoxic, and cell-penetrating properties of kalata B1 and MCoTI-II, which could be useful for future engineering of cyclotides to carry bioactive epitopes to intracellular targets.


Asunto(s)
Ciclotidas/química , Proteínas de Plantas/química , Secuencia de Aminoácidos , Supervivencia Celular/efectos de los fármacos , Cucurbitaceae/metabolismo , Ciclotidas/síntesis química , Ciclotidas/toxicidad , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Células HeLa , Hemólisis/efectos de los fármacos , Humanos , Espectroscopía de Resonancia Magnética , Estructura Terciaria de Proteína
7.
Mol Biol Evol ; 32(2): 392-405, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25376175

RESUMEN

Cyclic proteins have evolved for millions of years across all kingdoms of life to confer structural stability over their acyclic counterparts while maintaining intrinsic functional properties. Here, we show that cyclic miniproteins (or peptides) from Momordica (Cucurbitaceae) seeds evolved in species that diverged from an African ancestor around 19 Ma. The ability to achieve head-to-tail cyclization of Momordica cyclic peptides appears to have been acquired through a series of mutations in their acyclic precursor coding sequences following recent and independent gene expansion event(s). Evolutionary analysis of Momordica cyclic peptides reveals sites that are under selection, highlighting residues that are presumably constrained for maintaining their function as potent trypsin inhibitors. Molecular dynamics of Momordica cyclic peptides in complex with trypsin reveals site-specific residues involved in target binding. In a broader context, this study provides a basis for selecting Momordica species to further investigate the biosynthesis of the cyclic peptides and for constructing libraries that may be screened against evolutionarily related serine proteases implicated in human diseases.


Asunto(s)
Momordica/metabolismo , Péptidos Cíclicos/metabolismo , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Evolución Biológica , Datos de Secuencia Molecular , Momordica/genética , Péptidos Cíclicos/genética , Proteínas de Plantas/genética , Inhibidores de Serina Proteinasa/metabolismo
8.
Biol Chem ; 397(12): 1237-1249, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-26894578

RESUMEN

Kallikrein-related peptidase 5 (KLK5) is a promising therapeutic target in several skin diseases, including Netherton syndrome, and is emerging as a potential target in various cancers. In this study, we used a sparse matrix library of 125 individually synthesized peptide substrates to characterize the binding specificity of KLK5. The sequences most favored by KLK5 were GRSR, YRSR and GRNR, and we identified sequence-specific interactions involving the peptide N-terminus by analyzing kinetic constants (kcat and KM) and performing molecular dynamics simulations. KLK5 inhibitors were subsequently engineered by substituting substrate sequences into the binding loop (P1, P2 and P4 residues) of sunflower trypsin inhibitor-1 (SFTI-1). These inhibitors were effective against KLK5 but showed limited selectivity, and performing a further substitution at P2' led to the design of a new variant that displayed improved activity against KLK5 (Ki=4.2±0.2 nm), weak activity against KLK7 and 12-fold selectivity over KLK14. Collectively, these findings provide new insight into the design of highly favored binding sequences for KLK5 and reveal several opportunities for modulating inhibitor selectivity over closely related proteases that will be useful for future studies aiming to develop therapeutic molecules targeting KLK5.


Asunto(s)
Dominio Catalítico , Calicreínas/antagonistas & inhibidores , Calicreínas/metabolismo , Péptidos Cíclicos/metabolismo , Péptidos Cíclicos/farmacología , Ingeniería de Proteínas , Secuencia de Aminoácidos , Calicreínas/química , Simulación de Dinámica Molecular , Péptidos Cíclicos/química , Péptidos Cíclicos/genética , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Inhibidores de Proteasas/farmacología , Unión Proteica , Especificidad por Sustrato
9.
Biopolymers ; 106(6): 806-817, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27352920

RESUMEN

A new family of small plant peptides was recently described and found to be widespread throughout the Millereae and Heliantheae tribes of the sunflower family Asteraceae. These peptides originate from the post-translational processing of unusual seed-storage albumin genes, and have been termed PawS-derived peptides (PDPs). The prototypic family member is a 14-residue cyclic peptide with potent trypsin inhibitory activity named SunFlower Trypsin Inhibitor (SFTI-1). In this study we present the features of three new PDPs discovered in the seeds of the sunflower species Zinnia haageana by a combination of de novo transcriptomics and liquid chromatography-mass spectrometry. Two-dimensional solution NMR spectroscopy was used to elucidate their structural characteristics. All three Z. haageana peptides have well-defined folds with a head-to-tail cyclized peptide backbone and a single disulfide bond. Although two possess an anti-parallel ß-sheet structure, like SFTI-1, the Z. haageana peptide PDP-21 has a more irregular backbone structure. Despite structural similarities with SFTI-1, PDP-20 was not able to inhibit trypsin, thus the functional roles of these peptides is yet to be discovered. Defining the structural features of the small cyclic peptides found in the sunflower family will be useful for guiding the exploitation of these peptides as scaffolds for grafting and protein engineering applications.


Asunto(s)
Asteraceae/química , Resonancia Magnética Nuclear Biomolecular , Péptidos Cíclicos/química , Proteínas de Almacenamiento de Semillas/química , Péptidos Cíclicos/aislamiento & purificación , Estructura Secundaria de Proteína , Proteínas de Almacenamiento de Semillas/aislamiento & purificación
10.
Biochem J ; 469(2): 243-53, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25981970

RESUMEN

Laskowski inhibitors regulate serine proteases by an intriguing mode of action that involves deceiving the protease into synthesizing a peptide bond. Studies exploring naturally occurring Laskowski inhibitors have uncovered several structural features that convey the inhibitor's resistance to hydrolysis and exceptional binding affinity. However, in the context of Laskowski inhibitor engineering, the way that various modifications intended to fine-tune an inhibitor's potency and selectivity impact on its association and dissociation rates remains unclear. This information is important as Laskowski inhibitors are becoming increasingly used as design templates to develop new protease inhibitors for pharmaceutical applications. In this study, we used the cyclic peptide, sunflower trypsin inhibitor-1 (SFTI-1), as a model system to explore how the inhibitor's sequence and structure relate to its binding kinetics and function. Using enzyme assays, MD simulations and NMR spectroscopy to study SFTI variants with diverse sequence and backbone modifications, we show that the geometry of the binding loop mainly influences the inhibitor's potency by modulating the association rate, such that variants lacking a favourable conformation show dramatic losses in activity. Additionally, we show that the inhibitor's sequence (including both the binding loop and its scaffolding) influences its potency and selectivity by modulating both the association and the dissociation rates. These findings provide new insights into protease inhibitor function and design that we apply by engineering novel inhibitors for classical serine proteases, trypsin and chymotrypsin and two kallikrein-related peptidases (KLK5 and KLK14) that are implicated in various cancers and skin diseases.


Asunto(s)
Calicreínas/antagonistas & inhibidores , Péptidos Cíclicos/química , Proteínas de Plantas/química , Humanos , Calicreínas/química , Péptidos Cíclicos/genética , Proteínas de Plantas/genética , Ingeniería de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
11.
Biopolymers ; 2013 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-23494567

RESUMEN

Potent and specific enzyme inhibition is a key goal in development of therapeutic inhibitors targeting proteolytic activity. The backbone-cyclised peptide, Sunflower Trypsin Inhibitor (SFTI-1) affords a scaffold that can be engineered to achieve both these aims. SFTI-1's mechanism of inhibition is unusual in that it shows fast-on/slow-off kinetics driven by cleavage and religation of a scissile bond. This phenomenon was used to select a nanomolar inhibitor of kallikrein related peptidase 7 (KLK7) from a versatile library of SFTI variants with diversity tailored to exploit distinctive surfaces present in the active site of serine proteases. Inhibitor selection was achieved through use of size exclusion chromatography to separate protease/inhibitor complexes from unbound inhibitors followed by inhibitor identification according to molecular mass ascertained by mass spectrometry. This approach identified a single dominant inhibitor species with molecular weight of 1562.4 Da, which is consistent with the SFTI variant SFTI-WCTF. Once synthesised individually this inhibitor showed an IC50 of 173.9±7.6 nM against chromogenic substrates and could block protein proteolysis. Molecular modelling analysis suggested that selection of SFTI-WCTF was driven by specific aromatic interactions and stabilised by an enhanced internal hydrogen bonding network. This approach provides a robust and rapid route to inhibitor selection and design. © 2013 Wiley Periodicals, Inc. Biopolymers, 2013.

12.
Biopolymers ; 100(5): 510-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24078181

RESUMEN

Potent and specific enzyme inhibition is a key goal in the development of therapeutic inhibitors targeting proteolytic activity. The backbone-cyclized peptide, Sunflower Trypsin Inhibitor (SFTI-1) affords a scaffold that can be engineered to achieve both these aims. SFTI-1's mechanism of inhibition is unusual in that it shows fast-on/slow-off kinetics driven by cleavage and religation of a scissile bond. This phenomenon was used to select a nanomolar inhibitor of kallikrein-related peptidase 7 (KLK7) from a versatile library of SFTI variants with diversity tailored to exploit distinctive surfaces present in the active site of serine proteases. Inhibitor selection was achieved through the use of size exclusion chromatography to separate protease/inhibitor complexes from unbound inhibitors followed by inhibitor identification according to molecular mass ascertained by mass spectrometry. This approach identified a single dominant inhibitor species with molecular weight of 1562.4 Da, which is consistent with the SFTI variant SFTI-WCTF. Once synthesized individually this inhibitor showed an IC50 of 173.9 ± 7.6 nM against chromogenic substrates and could block protein proteolysis. Molecular modeling analysis suggested that selection of SFTI-WCTF was driven by specific aromatic interactions and stabilized by an enhanced internal hydrogen bonding network. This approach provides a robust and rapid route to inhibitor selection and design.


Asunto(s)
Helianthus , Inhibidores de Tripsina , Helianthus/química , Enlace de Hidrógeno , Calicreínas , Péptidos Cíclicos/química , Tripsina/química , Inhibidores de Tripsina/química
13.
Chembiochem ; 13(3): 336-48, 2012 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-22238174

RESUMEN

The serine protease plasmin is ubiquitously expressed throughout the human body in the form of the zymogen plasminogen. Conversion to active plasmin occurs through enzymatic cleavage by plasminogen activators. The plasminogen activator/plasmin system has a well-established function in the removal of intravascular fibrin deposition through fibrinolysis and the inhibition of plasmin activity; this has found widespread clinical use in reducing perioperative bleeding. Increasing evidence also suggests diverse, although currently less defined, roles for plasmin in a number of physiological and pathological processes relating to extracellular matrix degradation, cell migration and tissue remodelling. In particular, dysregulation of plasmin has been linked to cancer invasion/metastasis and various chronic inflammatory conditions; this has prompted efforts to develop inhibitors of this protease. Although a number of plasmin inhibitors exist, they commonly suffer from poor potency and/or specificity of inhibition that either results in reduced efficacy or prevents clinical use. Consequently, there is a need for further development of high-affinity plasmin inhibitors that maintain selectivity over other serine proteases. This review summarises clearly defined and potential applications for plasmin inhibition. The properties of naturally occurring and engineered plasmin inhibitors are discussed in the context of current knowledge regarding plasmin structure, specificity and function. This includes design strategies to obtain the potency and specificity of inhibition in addition to controlled temporal and spatial distribution tailored for the intended use.


Asunto(s)
Diseño de Fármacos , Fibrinolisina/antagonistas & inhibidores , Ingeniería de Proteínas , Inhibidores de Serina Proteinasa/farmacología , Fibrinolisina/metabolismo , Humanos , Inhibidores de Serina Proteinasa/síntesis química , Inhibidores de Serina Proteinasa/química , Relación Estructura-Actividad
14.
Biol Chem ; 393(5): 331-41, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22505516

RESUMEN

An array of substrates link the tryptic serine protease, kallikrein-related peptidase 14 (KLK14), to physiological functions including desquamation and activation of signaling molecules associated with inflammation and cancer. Recognition of protease cleavage sequences is driven by complementarity between exposed substrate motifs and the physicochemical signature of an enzyme's active site cleft. However, conventional substrate screening methods have generated conflicting subsite profiles for KLK14. This study utilizes a recently developed screening technique, the sparse matrix library, to identify five novel high-efficiency sequences for KLK14. The optimal sequence, YASR, was cleaved with higher efficiency (k(cat)/K(m)=3.81 ± 0.4 × 10(6) M(-1) s(-1)) than favored substrates from positional scanning and phage display by 2- and 10-fold, respectively. Binding site cooperativity was prominent among preferred sequences, which enabled optimal interaction at all subsites as indicated by predictive modeling of KLK14/substrate complexes. These simulations constitute the first molecular dynamics analysis of KLK14 and offer a structural rationale for the divergent subsite preferences evident between KLK14 and closely related KLKs, KLK4 and KLK5. Collectively, these findings highlight the importance of binding site cooperativity in protease substrate recognition, which has implications for discovery of optimal substrates and engineering highly effective protease inhibitors.


Asunto(s)
Técnicas Químicas Combinatorias/métodos , Evaluación Preclínica de Medicamentos/métodos , Calicreínas/química , Calicreínas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Biocatálisis , Humanos , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
15.
Biochemistry ; 50(39): 8454-62, 2011 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-21877690

RESUMEN

Perioperative bleeding is a cause of major blood loss and is associated with increased rates of postoperative morbidity and mortality. To combat this, antifibrinolytic inhibitors of the serine protease plasmin are commonly used to reduce bleeding during surgery. The most effective and previously widely used of these is the broad range serine protease inhibitor aprotinin. However, adverse clinical outcomes have led to use of alternative serine lysine analogues to inhibit plasmin. These compounds suffer from low selectivity and binding affinity. Consequently, a concerted effort to discover potent and selective plasmin inhibitors has developed. This study used a noncombinatorial peptide library to define plasmin's extended substrate specificity and guide the design of potent transition state analogue inhibitors. The various substrate binding sites of plasmin were found to exhibit a higher degree of cooperativity than had previously been appreciated. Peptide sequences capitalizing on these features produced high-affinity inhibitors of plasmin. The most potent of these, Lys-Met(sulfone)-Tyr-Arg-H [KM(O(2))YR-H], inhibited plasmin with a K(i) of 3.1 nM while maintaining 25-fold selectivity over plasma kallikrein. Furthermore, 125 nM (0.16 µg/mL) KM(O(2))YR-H attenuated fibrinolysis in vitro with an efficacy similar to that of 15 nM (0.20 µg/mL) aprotinin. To date, this is the most potent peptide inhibitor of plasmin that exhibits selectivity against plasma kallikrein, making this compound an attractive candidate for further therapeutic development.


Asunto(s)
Antifibrinolíticos/síntesis química , Sitios de Unión , Fibrinolisina/química , Oligopéptidos/síntesis química , Antifibrinolíticos/farmacología , Aprotinina/farmacología , Diseño de Fármacos , Humanos , Cinética , Oligopéptidos/farmacología
16.
Biol Chem ; 391(4): 357-74, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20180638

RESUMEN

The kallikreins and kallikrein-related peptidases are serine proteases that control a plethora of developmental and homeostatic phenomena, ranging from semen liquefaction to skin desquamation and blood pressure. The diversity of roles played by kallikreins has stimulated considerable interest in these enzymes from the perspective of diagnostics and drug design. Kallikreins already have well-established credentials as targets for therapeutic intervention and there is increasing appreciation of their potential both as biomarkers and as targets for inhibitor design. Here, we explore the current status of naturally occurring kallikrein protease-inhibitor complexes and illustrate how this knowledge can interface with strategies for rational re-engineering of bioscaffolds and design of small-molecule inhibitors.


Asunto(s)
Productos Biológicos/farmacología , Ingeniería Genética , Calicreínas/antagonistas & inhibidores , Inhibidores de Proteasas/farmacología , Secuencia de Aminoácidos , Animales , Disponibilidad Biológica , Productos Biológicos/farmacocinética , Estabilidad de Medicamentos , Humanos , Calicreínas/química , Calicreínas/metabolismo , Datos de Secuencia Molecular , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacocinética
17.
J Med Chem ; 63(2): 816-826, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31855419

RESUMEN

Chymase is a serine protease that is predominantly expressed by mast cells and has key roles in immune defense and the cardiovascular system. This enzyme has also emerged as a therapeutic target for cardiovascular disease due to its ability to remodel cardiac tissue and generate angiotensin II. Here, we used the nature-derived cyclic peptide sunflower trypsin inhibitor-1 (SFTI-1) as a template for designing novel chymase inhibitors. The key binding contacts of SFTI-1 were optimized by combining a peptide substrate library screen with structure-based design, which yielded several variants with potent activity. The lead variant was further modified by replacing the P1 Tyr residue with para-substituted Phe derivatives, generating new inhibitors with improved potency (Ki = 1.8 nM) and higher selectivity over closely related enzymes. Several variants were shown to block angiotensin I cleavage in vitro, highlighting their potential for further development and future evaluation as pharmaceutical leads.


Asunto(s)
Quimasas/antagonistas & inhibidores , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/farmacología , Sustitución de Aminoácidos , Angiotensina II/biosíntesis , Cristalografía por Rayos X , Diseño de Fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Fenilalanina/química , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad , Tirosina/química
18.
ACS Med Chem Lett ; 10(8): 1234-1239, 2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31413811

RESUMEN

Neutrophils produce at least four serine proteases that are packaged within azurophilic granules. These enzymes contribute to antimicrobial defense and inflammation but can be destructive if their activities are not properly regulated. Accordingly, they represent therapeutic targets for several diseases, including chronic obstructive pulmonary disease, cystic fibrosis, and rheumatoid arthritis. In this study, we focused on proteinase 3 (PR3), a neutrophil protease with elastase-like specificity, and engineered potent PR3 inhibitors based on the cyclic peptide sunflower trypsin inhibitor-1 (SFTI-1). We used an iterative optimization approach to screen targeted substitutions at the P1, P2, P2', and P4 positions of SFTI-1, and generated several new inhibitors with K i values in the low nanomolar range. These SFTI-variants show high stability in human serum and are attractive leads for further optimization.

19.
J Med Chem ; 62(7): 3696-3706, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30888159

RESUMEN

Sunflower trypsin inhibitor-1 (SFTI-1) is a 14-amino acid cyclic peptide that shares an inhibitory loop with a sequence and structure similar to a larger family of serine protease inhibitors, the Bowman-Birk inhibitors. Here, we focus on the P5' residue in the Bowman-Birk inhibitory loop and produce a library of SFTI variants to characterize the P5' specificity of 11 different proteases. We identify seven amino acids that are generally preferred by these enzymes and also correlate with P5' sequence diversity in naturally occurring Bowman-Birk inhibitors. Additionally, we show that several enzymes have divergent specificities that can be harnessed in engineering studies. By optimizing the P5' residue, we improve the potency or selectivity of existing inhibitors for kallikrein-related peptidase 5 and show that a variant with substitutions at 7 of the scaffold's 14 residues retains a similar structure to SFTI-1. These findings provide new insights into P5' specificity requirements for the Bowman-Birk inhibitory loop.


Asunto(s)
Aminoácidos/metabolismo , Serina Proteasas/metabolismo , Inhibidor de la Tripsina de Soja de Bowman-Birk/farmacología , Quimotripsina/metabolismo , Factor XIIa/metabolismo , Humanos , Serina Endopeptidasas/metabolismo , Especificidad por Sustrato , Trombina/metabolismo , Tripsina/metabolismo
20.
PLoS One ; 14(1): e0210842, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30668585

RESUMEN

Engagement of an extended ß-sheet is a common substrate/inhibitor interaction at the active site of serine proteases and is an important feature of Laskowski mechanism inhibitors that present a substrate-like loop to a target protease. This loop is cleaved but subsequently relegated forming a stable inhibitor/protease complex. Laskowski inhibitors are ubiquitous in nature and are used extensively in serine protease inhibitor design. However, most studies concentrate on introducing new sidechain interactions rather than the direct contributions of the substrate-like ß-sheet to enzyme inhibition. Here we report the crystal structure of an simplified ß-sheet inhibitory motif within the Sunflower Trypsin Inhibitor (SFTI) in complex with trypsin. We show that the intramolecular hydrogen bond network of this SFTI variant (SFTI-TCTR) engages the inhibitor sidechains that would normally interact with a target protease, giving mainchain interactions a more prominent role in complex formation. Despite having reduced sidechain interactions, this SFTI variant is remarkably potent and inhibits a diverse range of serine proteases. Crystal structural analysis and molecular modelling of SFTI-TCTR complexes again indicates an interface dominated by ß-sheet interactions, highlighting the importance of this motif and the adaptability of SFTI as a scaffold for inhibitor design.


Asunto(s)
Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/farmacología , Tripsina/química , Secuencias de Aminoácidos , Animales , Bovinos , Cristalografía por Rayos X , Helianthus/química , Enlace de Hidrógeno , Modelos Moleculares , Simulación de Dinámica Molecular , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Proteínas de Plantas/química , Proteínas de Plantas/farmacología , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Electricidad Estática , Inhibidores de Tripsina/química , Inhibidores de Tripsina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA