Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(6): e2309333121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38289951

RESUMEN

We present improved estimates of air-sea CO2 exchange over three latitude bands of the Southern Ocean using atmospheric CO2 measurements from global airborne campaigns and an atmospheric 4-box inverse model based on a mass-indexed isentropic coordinate (Mθe). These flux estimates show two features not clearly resolved in previous estimates based on inverting surface CO2 measurements: a weak winter-time outgassing in the polar region and a sharp phase transition of the seasonal flux cycles between polar/subpolar and subtropical regions. The estimates suggest much stronger summer-time uptake in the polar/subpolar regions than estimates derived through neural-network interpolation of pCO2 data obtained with profiling floats but somewhat weaker uptake than a recent study by Long et al. [Science 374, 1275-1280 (2021)], who used the same airborne data and multiple atmospheric transport models (ATMs) to constrain surface fluxes. Our study also uses moist static energy (MSE) budgets from reanalyses to show that most ATMs tend to have excessive diabatic mixing (transport across moist isentrope, θe, or Mθe surfaces) at high southern latitudes in the austral summer, which leads to biases in estimates of air-sea CO2 exchange. Furthermore, we show that the MSE-based constraint is consistent with an independent constraint on atmospheric mixing based on combining airborne and surface CO2 observations.

2.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34380737

RESUMEN

In the Arctic and Boreal region (ABR) where warming is especially pronounced, the increase of gross primary production (GPP) has been suggested as an important driver for the increase of the atmospheric CO2 seasonal cycle amplitude (SCA). However, the role of GPP relative to changes in ecosystem respiration (ER) remains unclear, largely due to our inability to quantify these gross fluxes on regional scales. Here, we use atmospheric carbonyl sulfide (COS) measurements to provide observation-based estimates of GPP over the North American ABR. Our annual GPP estimate is 3.6 (2.4 to 5.5) PgC · y-1 between 2009 and 2013, the uncertainty of which is smaller than the range of GPP estimated from terrestrial ecosystem models (1.5 to 9.8 PgC · y-1). Our COS-derived monthly GPP shows significant correlations in space and time with satellite-based GPP proxies, solar-induced chlorophyll fluorescence, and near-infrared reflectance of vegetation. Furthermore, the derived monthly GPP displays two different linear relationships with soil temperature in spring versus autumn, whereas the relationship between monthly ER and soil temperature is best described by a single quadratic relationship throughout the year. In spring to midsummer, when GPP is most strongly correlated with soil temperature, our results suggest the warming-induced increases of GPP likely exceeded the increases of ER over the past four decades. In autumn, however, increases of ER were likely greater than GPP due to light limitations on GPP, thereby enhancing autumn net carbon emissions. Both effects have likely contributed to the atmospheric CO2 SCA amplification observed in the ABR.

3.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34930838

RESUMEN

Ozone is the third most important anthropogenic greenhouse gas after carbon dioxide and methane but has a larger uncertainty in its radiative forcing, in part because of uncertainty in the source characteristics of ozone precursors, nitrogen oxides, and volatile organic carbon that directly affect ozone formation chemistry. Tropospheric ozone also negatively affects human and ecosystem health. Biomass burning (BB) and urban emissions are significant but uncertain sources of ozone precursors. Here, we report global-scale, in situ airborne measurements of ozone and precursor source tracers from the NASA Atmospheric Tomography mission. Measurements from the remote troposphere showed that tropospheric ozone is regularly enhanced above background in polluted air masses in all regions of the globe. Ozone enhancements in air with high BB and urban emission tracers (2.1 to 23.8 ppbv [parts per billion by volume]) were generally similar to those in BB-influenced air (2.2 to 21.0 ppbv) but larger than those in urban-influenced air (-7.7 to 6.9 ppbv). Ozone attributed to BB was 2 to 10 times higher than that from urban sources in the Southern Hemisphere and the tropical Atlantic and roughly equal to that from urban sources in the Northern Hemisphere and the tropical Pacific. Three independent global chemical transport models systematically underpredict the observed influence of BB on tropospheric ozone. Potential reasons include uncertainties in modeled BB injection heights and emission inventories, export efficiency of BB emissions to the free troposphere, and chemical mechanisms of ozone production in smoke. Accurately accounting for intermittent but large and widespread BB emissions is required to understand the global tropospheric ozone burden.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Biomasa , Ozono , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Atmósfera , Ecosistema , Incendios , Ozono/análisis , Ozono/química
4.
Proc Natl Acad Sci U S A ; 117(35): 21079-21087, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32817563

RESUMEN

The amplitude of the atmospheric CO2 seasonal cycle has increased by 30 to 50% in the Northern Hemisphere (NH) since the 1960s, suggesting widespread ecological changes in the northern extratropics. However, substantial uncertainty remains in the continental and regional drivers of this prominent amplitude increase. Here we present a quantitative regional attribution of CO2 seasonal amplification over the past 4 decades, using a tagged atmospheric transport model prescribed with observationally constrained fluxes. We find that seasonal flux changes in Siberian and temperate ecosystems together shape the observed amplitude increases in the NH. At the surface of northern high latitudes, enhanced seasonal carbon exchange in Siberia is the dominant contributor (followed by temperate ecosystems). Arctic-boreal North America shows much smaller changes in flux seasonality and has only localized impacts. These continental contrasts, based on an atmospheric approach, corroborate heterogeneous vegetation greening and browning trends from field and remote-sensing observations, providing independent evidence for regionally divergent ecological responses and carbon dynamics to global change drivers. Over surface midlatitudes and throughout the midtroposphere, increased seasonal carbon exchange in temperate ecosystems is the dominant contributor to CO2 amplification, albeit with considerable contributions from Siberia. Representing the mechanisms that control the high-latitude asymmetry in flux amplification found in this study should be an important goal for mechanistic land surface models moving forward.


Asunto(s)
Atmósfera/química , Dióxido de Carbono/química , Carbono/química , Regiones Árticas , Ciclo del Carbono/fisiología , Dióxido de Carbono/análisis , Clima , Cambio Climático , Ecosistema , América del Norte , Fotosíntesis , Estaciones del Año , Siberia
5.
Proc Natl Acad Sci U S A ; 117(24): 13300-13307, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32482875

RESUMEN

We report national scale estimates of CO2 emissions from fossil-fuel combustion and cement production in the United States based directly on atmospheric observations, using a dual-tracer inverse modeling framework and CO2 and [Formula: see text] measurements obtained primarily from the North American portion of the National Oceanic and Atmospheric Administration's Global Greenhouse Gas Reference Network. The derived US national total for 2010 is 1,653 ± 30 TgC yr-1 with an uncertainty ([Formula: see text]) that takes into account random errors associated with atmospheric transport, atmospheric measurements, and specified prior CO2 and 14C fluxes. The atmosphere-derived estimate is significantly larger ([Formula: see text]) than US national emissions for 2010 from three global inventories widely used for CO2 accounting, even after adjustments for emissions that might be sensed by the atmospheric network, but which are not included in inventory totals. It is also larger ([Formula: see text]) than a similarly adjusted total from the US Environmental Protection Agency (EPA), but overlaps EPA's reported upper 95% confidence limit. In contrast, the atmosphere-derived estimate is within [Formula: see text] of the adjusted 2010 annual total and nine of 12 adjusted monthly totals aggregated from the latest version of the high-resolution, US-specific "Vulcan" emission data product. Derived emissions appear to be robust to a range of assumed prior emissions and other parameters of the inversion framework. While we cannot rule out a possible bias from assumed prior Net Ecosystem Exchange over North America, we show that this can be overcome with additional [Formula: see text] measurements. These results indicate the strong potential for quantification of US emissions and their multiyear trends from atmospheric observations.

6.
Global Biogeochem Cycles ; 36(9): e2021GB007216, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36590828

RESUMEN

The northern high latitude (NHL, 40°N to 90°N) is where the second peak region of gross primary productivity (GPP) other than the tropics. The summer NHL GPP is about 80% of the tropical peak, but both regions are still highly uncertain (Norton et al. 2019, https://doi.org/10.5194/bg-16-3069-2019). Carbonyl sulfide (OCS) provides an important proxy for photosynthetic carbon uptake. Here we optimize the OCS plant uptake fluxes across the NHL by fitting atmospheric concentration simulation with the GEOS-CHEM global transport model to the aircraft profiles acquired over Alaska during NASA's Carbon in Arctic Reservoirs Vulnerability Experiment (2012-2015). We use the empirical biome-specific linear relationship between OCS plant uptake flux and GPP to derive the six plant uptake OCS fluxes from different GPP data. Such GPP-based fluxes are used to drive the concentration simulations. We evaluate the simulations against the independent observations at two ground sites of Alaska. The optimized OCS fluxes suggest the NHL plant uptake OCS flux of -247 Gg S year-1, about 25% stronger than the ensemble mean of the six GPP-based OCS fluxes. GPP-based OCS fluxes systematically underestimate the peak growing season across the NHL, while a subset of models predict early start of season in Alaska, consistent with previous studies of net ecosystem exchange. The OCS optimized GPP of 34 PgC yr-1 for NHL is also about 25% more than the ensembles mean from six GPP data. Further work is needed to fully understand the environmental and biotic drivers and quantify their rate of photosynthetic carbon uptake in Arctic ecosystems.

7.
Environ Sci Technol ; 56(4): 2172-2180, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35080873

RESUMEN

We analyze airborne measurements of atmospheric CO concentration from 70 flights conducted over six years (2015-2020) using an inverse model to quantify the CO emissions from the Washington, DC, and Baltimore metropolitan areas. We found that CO emissions have been declining in the area at a rate of ≈-4.5 % a-1 since 2015 or ≈-3.1 % a-1 since 2016. In addition, we found that CO emissions show a "Sunday" effect, with emissions being lower, on average, than for the rest of the week and that the seasonal cycle is no larger than 16 %. Our results also show that the trend derived from the NEI agrees well with the observed trend, but that NEI daytime-adjusted emissions are ≈50 % larger than our estimated emissions. In 2020, measurements collected during the shutdown in activity related to the COVID-19 pandemic indicate a significant drop in CO emissions of 16 % relative to the expected emissions trend from the previous years, or 23 % relative to the mean of 2016 to February 2020. Our results also indicate a larger reduction in April than in May. Last, we show that this reduction in CO emissions was driven mainly by a reduction in traffic.


Asunto(s)
Contaminantes Atmosféricos , COVID-19 , Contaminantes Atmosféricos/análisis , Baltimore , Monóxido de Carbono , District of Columbia , Monitoreo del Ambiente , Humanos , Pandemias , SARS-CoV-2 , Emisiones de Vehículos/análisis
8.
Proc Natl Acad Sci U S A ; 116(23): 11171-11180, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31110019

RESUMEN

The hydroxyl radical (OH) fuels tropospheric ozone production and governs the lifetime of methane and many other gases. Existing methods to quantify global OH are limited to annual and global-to-hemispheric averages. Finer resolution is essential for isolating model deficiencies and building process-level understanding. In situ observations from the Atmospheric Tomography (ATom) mission demonstrate that remote tropospheric OH is tightly coupled to the production and loss of formaldehyde (HCHO), a major hydrocarbon oxidation product. Synthesis of this relationship with satellite-based HCHO retrievals and model-derived HCHO loss frequencies yields a map of total-column OH abundance throughout the remote troposphere (up to 70% of tropospheric mass) over the first two ATom missions (August 2016 and February 2017). This dataset offers unique insights on near-global oxidizing capacity. OH exhibits significant seasonality within individual hemispheres, but the domain mean concentration is nearly identical for both seasons (1.03 ± 0.25 × 106 cm-3), and the biseasonal average North/South Hemisphere ratio is 0.89 ± 0.06, consistent with a balance of OH sources and sinks across the remote troposphere. Regional phenomena are also highlighted, such as a 10-fold OH depression in the Tropical West Pacific and enhancements in the East Pacific and South Atlantic. This method is complementary to budget-based global OH constraints and can help elucidate the spatial and temporal variability of OH production and methane loss.

9.
Proc Natl Acad Sci U S A ; 115(29): 7491-7496, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29967154

RESUMEN

With the pending withdrawal of the United States from the Paris Climate Accord, cities are now leading US actions toward reducing greenhouse gas emissions. Implementing effective mitigation strategies requires the ability to measure and track emissions over time and at various scales. We report CO2 emissions in the Boston, MA, urban region from September 2013 to December 2014 based on atmospheric observations in an inverse model framework. Continuous atmospheric measurements of CO2 from five sites in and around Boston were combined with a high-resolution bottom-up CO2 emission inventory and a Lagrangian particle dispersion model to determine regional emissions. Our model-measurement framework incorporates emissions estimates from submodels for both anthropogenic and biological CO2 fluxes, and development of a CO2 concentration curtain at the boundary of the study region based on a combination of tower measurements and modeled vertical concentration gradients. We demonstrate that an emission inventory with high spatial and temporal resolution and the inclusion of urban biological fluxes are both essential to accurately modeling annual CO2 fluxes using surface measurement networks. We calculated annual average emissions in the Boston region of 0.92 kg C·m-2·y-1 (95% confidence interval: 0.79 to 1.06), which is 14% higher than the Anthropogenic Carbon Emissions System inventory. Based on the capability of the model-measurement approach demonstrated here, our framework should be able to detect changes in CO2 emissions of greater than 18%, providing stakeholders with critical information to assess mitigation efforts in Boston and surrounding areas.


Asunto(s)
Atmósfera/análisis , Dióxido de Carbono/análisis , Gases de Efecto Invernadero/análisis , Modelos Teóricos , Remodelación Urbana , Boston
10.
Nature ; 514(7522): 351-4, 2014 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-25274311

RESUMEN

The United States is now experiencing the most rapid expansion in oil and gas production in four decades, owing in large part to implementation of new extraction technologies such as horizontal drilling combined with hydraulic fracturing. The environmental impacts of this development, from its effect on water quality to the influence of increased methane leakage on climate, have been a matter of intense debate. Air quality impacts are associated with emissions of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs), whose photochemistry leads to production of ozone, a secondary pollutant with negative health effects. Recent observations in oil- and gas-producing basins in the western United States have identified ozone mixing ratios well in excess of present air quality standards, but only during winter. Understanding winter ozone production in these regions is scientifically challenging. It occurs during cold periods of snow cover when meteorological inversions concentrate air pollutants from oil and gas activities, but when solar irradiance and absolute humidity, which are both required to initiate conventional photochemistry essential for ozone production, are at a minimum. Here, using data from a remote location in the oil and gas basin of northeastern Utah and a box model, we provide a quantitative assessment of the photochemistry that leads to these extreme winter ozone pollution events, and identify key factors that control ozone production in this unique environment. We find that ozone production occurs at lower NOx and much larger VOC concentrations than does its summertime urban counterpart, leading to carbonyl (oxygenated VOCs with a C = O moiety) photolysis as a dominant oxidant source. Extreme VOC concentrations optimize the ozone production efficiency of NOx. There is considerable potential for global growth in oil and gas extraction from shale. This analysis could help inform strategies to monitor and mitigate air quality impacts and provide broader insight into the response of winter ozone to primary pollutants.

11.
Proc Natl Acad Sci U S A ; 114(21): 5361-5366, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28484001

RESUMEN

High-latitude ecosystems have the capacity to release large amounts of carbon dioxide (CO2) to the atmosphere in response to increasing temperatures, representing a potentially significant positive feedback within the climate system. Here, we combine aircraft and tower observations of atmospheric CO2 with remote sensing data and meteorological products to derive temporally and spatially resolved year-round CO2 fluxes across Alaska during 2012-2014. We find that tundra ecosystems were a net source of CO2 to the atmosphere annually, with especially high rates of respiration during early winter (October through December). Long-term records at Barrow, AK, suggest that CO2 emission rates from North Slope tundra have increased during the October through December period by 73% ± 11% since 1975, and are correlated with rising summer temperatures. Together, these results imply increasing early winter respiration and net annual emission of CO2 in Alaska, in response to climate warming. Our results provide evidence that the decadal-scale increase in the amplitude of the CO2 seasonal cycle may be linked with increasing biogenic emissions in the Arctic, following the growing season. Early winter respiration was not well simulated by the Earth System Models used to forecast future carbon fluxes in recent climate assessments. Therefore, these assessments may underestimate the carbon release from Arctic soils in response to a warming climate.

12.
Environ Sci Technol ; 53(1): 287-295, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30520634

RESUMEN

Urban areas contribute approximately three-quarters of fossil fuel derived CO2 emissions, and many cities have enacted emissions mitigation plans. Evaluation of the effectiveness of mitigation efforts will require measurement of both the emission rate and its change over space and time. The relative performance of different emission estimation methods is a critical requirement to support mitigation efforts. Here we compare results of CO2 emissions estimation methods including an inventory-based method and two different top-down atmospheric measurement approaches implemented for the Indianapolis, Indiana, U.S.A. urban area in winter. By accounting for differences in spatial and temporal coverage, as well as trace gas species measured, we find agreement among the wintertime whole-city fossil fuel CO2 emission rate estimates to within 7%. This finding represents a major improvement over previous comparisons of urban-scale emissions, making urban CO2 flux estimates from this study consistent with local and global emission mitigation strategy needs. The complementary application of multiple scientifically driven emissions quantification methods enables and establishes this high level of confidence and demonstrates the strength of the joint implementation of rigorous inventory and atmospheric emissions monitoring approaches.


Asunto(s)
Contaminantes Atmosféricos , Dióxido de Carbono , Ciudades , Combustibles Fósiles , Indiana
13.
Geophys Res Lett ; 46(14): 8500-8507, 2019 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-31762518

RESUMEN

Urban emissions remain an underexamined part of the methane budget. Here we present and interpret aircraft observations of six old and leak-prone major cities along the East Coast of the United States. We use direct observations of methane (CH4), carbon dioxide (CO2), carbon monoxide (CO), ethane (C2H6), and their correlations to quantify CH4 emissions and attribute to natural gas. We find the five largest cities emit 0.85 (0.63, 1.12) Tg CH4/year, of which 0.75 (0.49, 1.10) Tg CH4/year is attributed to natural gas. Our estimates, which include all thermogenic methane sources including end use, are more than twice that reported in the most recent gridded EPA inventory, which does not include end-use emissions. These results highlight that current urban inventory estimates of natural gas emissions are substantially low, either due to underestimates of leakage, lack of inclusion of end-use emissions, or some combination thereof.

14.
Proc Natl Acad Sci U S A ; 113(28): 7733-8, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27354511

RESUMEN

With rapid changes in climate and the seasonal amplitude of carbon dioxide (CO2) in the Arctic, it is critical that we detect and quantify the underlying processes controlling the changing amplitude of CO2 to better predict carbon cycle feedbacks in the Arctic climate system. We use satellite and airborne observations of atmospheric CO2 with climatically forced CO2 flux simulations to assess the detectability of Alaskan carbon cycle signals as future warming evolves. We find that current satellite remote sensing technologies can detect changing uptake accurately during the growing season but lack sufficient cold season coverage and near-surface sensitivity to constrain annual carbon balance changes at regional scale. Airborne strategies that target regular vertical profile measurements within continental interiors are more sensitive to regional flux deeper into the cold season but currently lack sufficient spatial coverage throughout the entire cold season. Thus, the current CO2 observing network is unlikely to detect potentially large CO2 sources associated with deep permafrost thaw and cold season respiration expected over the next 50 y. Although continuity of current observations is vital, strategies and technologies focused on cold season measurements (active remote sensing, aircraft, and tall towers) and systematic sampling of vertical profiles across continental interiors over the full annual cycle are required to detect the onset of carbon release from thawing permafrost.

15.
Proc Natl Acad Sci U S A ; 113(35): 9734-9, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27528660

RESUMEN

Methane (CH4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit [Formula: see text] 2 kg/h to 5 kg/h through [Formula: see text] 5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. With the observed confirmation of a lognormal emission distribution, this airborne observing strategy and its ability to locate previously unknown point sources in real time provides an efficient and effective method to identify and mitigate major emissions contributors over a wide geographic area. With improved instrumentation, this capability scales to spaceborne applications [Thompson DR, et al. (2016) Geophys Res Lett 43(12):6571-6578]. Further illustration of this potential is demonstrated with two detected, confirmed, and repaired pipeline leaks during the campaign.

16.
Proc Natl Acad Sci U S A ; 113(1): 40-5, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26699476

RESUMEN

Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥ 50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the "zero curtain" period, when subsurface soil temperatures are poised near 0 °C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH4 y(-1), ∼ 25% of global emissions from extratropical wetlands, or ∼ 6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming.


Asunto(s)
Frío , Metano/análisis , Tundra , Regiones Árticas , Monitoreo del Ambiente , Modelos Teóricos , Estaciones del Año , Suelo , Humedales
17.
Proc Natl Acad Sci U S A ; 113(11): 2880-5, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26929368

RESUMEN

National-scale emissions of carbon tetrachloride (CCl4) are derived based on inverse modeling of atmospheric observations at multiple sites across the United States from the National Oceanic and Atmospheric Administration's flask air sampling network. We estimate an annual average US emission of 4.0 (2.0-6.5) Gg CCl4 y(-1) during 2008-2012, which is almost two orders of magnitude larger than reported to the US Environmental Protection Agency (EPA) Toxics Release Inventory (TRI) (mean of 0.06 Gg y(-1)) but only 8% (3-22%) of global CCl4 emissions during these years. Emissive regions identified by the observations and consistently shown in all inversion results include the Gulf Coast states, the San Francisco Bay Area in California, and the Denver area in Colorado. Both the observation-derived emissions and the US EPA TRI identified Texas and Louisiana as the largest contributors, accounting for one- to two-thirds of the US national total CCl4 emission during 2008-2012. These results are qualitatively consistent with multiple aircraft and ship surveys conducted in earlier years, which suggested significant enhancements in atmospheric mole fractions measured near Houston and surrounding areas. Furthermore, the emission distribution derived for CCl4 throughout the United States is more consistent with the distribution of industrial activities included in the TRI than with the distribution of other potential CCl4 sources such as uncapped landfills or activities related to population density (e.g., use of chlorine-containing bleach).

18.
Proc Natl Acad Sci U S A ; 112(51): 15597-602, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26644584

RESUMEN

Published estimates of methane emissions from atmospheric data (top-down approaches) exceed those from source-based inventories (bottom-up approaches), leading to conflicting claims about the climate implications of fuel switching from coal or petroleum to natural gas. Based on data from a coordinated campaign in the Barnett Shale oil and gas-producing region of Texas, we find that top-down and bottom-up estimates of both total and fossil methane emissions agree within statistical confidence intervals (relative differences are 10% for fossil methane and 0.1% for total methane). We reduced uncertainty in top-down estimates by using repeated mass balance measurements, as well as ethane as a fingerprint for source attribution. Similarly, our bottom-up estimate incorporates a more complete count of facilities than past inventories, which omitted a significant number of major sources, and more effectively accounts for the influence of large emission sources using a statistical estimator that integrates observations from multiple ground-based measurement datasets. Two percent of oil and gas facilities in the Barnett accounts for half of methane emissions at any given time, and high-emitting facilities appear to be spatiotemporally variable. Measured oil and gas methane emissions are 90% larger than estimates based on the US Environmental Protection Agency's Greenhouse Gas Inventory and correspond to 1.5% of natural gas production. This rate of methane loss increases the 20-y climate impacts of natural gas consumed in the region by roughly 50%.

19.
Environ Sci Technol ; 51(9): 5317-5325, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28401762

RESUMEN

Incomplete combustion during flaring can lead to production of black carbon (BC) and loss of methane and other pollutants to the atmosphere, impacting climate and air quality. However, few studies have measured flare efficiency in a real-world setting. We use airborne data of plume samples from 37 unique flares in the Bakken region of North Dakota in May 2014 to calculate emission factors for BC, methane, ethane, and combustion efficiency for methane and ethane. We find no clear relationship between emission factors and aircraft-level wind speed or between methane and BC emission factors. Observed median combustion efficiencies for methane and ethane are close to expected values for typical flares according to the US EPA (98%). However, we find that the efficiency distribution is skewed, exhibiting log-normal behavior. This suggests incomplete combustion from flares contributes almost 1/5 of the total field emissions of methane and ethane measured in the Bakken shale, more than double the expected value if 98% efficiency was representative. BC emission factors also have a skewed distribution, but we find lower emission values than previous studies. The direct observation for the first time of a heavy-tail emissions distribution from flares suggests the need to consider skewed distributions when assessing flare impacts globally.


Asunto(s)
Metano , Gas Natural , Contaminantes Atmosféricos , Carbono , Etano , North Dakota
20.
Environ Sci Technol ; 51(10): 5832-5837, 2017 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-28418663

RESUMEN

Methane (CH4) is a potent greenhouse gas and the primary component of natural gas. The San Juan Basin (SJB) is one of the largest coal-bed methane producing regions in North America and, including gas production from conventional and shale sources, contributed ∼2% of U.S. natural gas production in 2015. In this work, we quantify the CH4 flux from the SJB using continuous atmospheric sampling from aircraft collected during the TOPDOWN2015 field campaign in April 2015. Using five independent days of measurements and the aircraft-based mass balance method, we calculate an average CH4 flux of 0.54 ± 0.20 Tg yr-1 (1σ), in close agreement with the previous space-based estimate made for 2003-2009. These results agree within error with the U.S. EPA gridded inventory for 2012. These flights combined with the previous satellite study suggest CH4 emissions have not changed. While there have been significant declines in natural gas production between measurements, recent increases in oil production in the SJB may explain why emission of CH4 has not declined. Airborne quantification of outcrops where seepage occurs are consistent with ground-based studies that indicate these geological sources are a small fraction of the basin total (0.02-0.12 Tg yr-1) and cannot explain basinwide consistent emissions from 2003 to 2015.


Asunto(s)
Contaminantes Atmosféricos/análisis , Metano/análisis , Aeronaves , Monitoreo del Ambiente , Gas Natural , América del Norte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA